
1 The Beauty
in Numbers

We are accustomed to seeing numbers in charts and tables on the sports
or business pages of a newspaper. We use numbers continuously in our
everyday life experiences, either to represent a quantity or to designate
something such as a street, address, or page. We use numbers without
ever taking the time to observe some of their unusual properties. That
is, we don’t stop to smell the flowers as we walk through a garden, or
as it is more commonly said: “take time to smell the roses.” Inspecting
some of these unusual number properties provides us with a much deeper
appreciation for these symbols that we all too often take for granted.
Students too often are taught mathematics as a dry and required course of
instruction. As teachers, we have an obligation to make it interesting. To
show some of the number oddities brings some new “life” to the subject.
It will evoke a “gee whiz” response from students. That’s what you ought
to strive for. Make them curious about the subject. Motivate them to “dig”
further.

There are basically two types of number properties, those that are “quirks”
of the decimal system and those that are true in any number system.
Naturally, the latter gives us better insight into mathematics, while the
former merely points out the arbitrary nature of using a decimal system.
One might ask why we use a decimal system (i.e., base 10) when today we
find the foundation of computers relies on a binary system (i.e., base 2).
The answer is clearly historical, and no doubt emanates from our number
of fingers.

On the surface, the two types of peculiarities do not differ much in
their appearance, just their justification. Since this book is intended for
the average student’s enjoyment (of course, presented appropriately), the
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justifications or explanations will be kept simple and adequately intel-
ligible. By the same token, in some cases the explanation might lead
the reader to further research into or inspection of the phenomenon. The
moment you can bring students to the point where they question why
the property exhibited occurred, they’re hooked! That is the goal of this
chapter, to make students want to marvel at the results and question
them. Although the explanations may leave them with some questions,
they will be well on their way to doing some individual explorations.
That is when they really get to appreciate the mathematics involved. It
is during these “private” investigations that genuine learning takes place.
Encourage it!

Above all, they must take note of the beauty of the number relationships.
Without further ado, let’s go to the charming realm of numbers and num-
ber relationships.

1.1 Surprising Number Patterns I

There are times when the charm of mathematics lies in the surprising
nature of its number system. There are not many words needed to demon-
strate this charm. It is obvious from the patterns attained. Look, enjoy, and
spread these amazing properties to your students. Let them appreciate the
patterns and, if possible, try to look for an “explanation” for this. Most
important is that the students can get an appreciation for the beauty in
these number patterns.

1 � 1 = 1
11 � 11 = 121

111 � 111 = 12�321
1�111 � 1�111 = 1�234�321

11�111 � 11�111 = 123�454�321
111�111 � 111�111 = 12�345�654�321

1�111�111 � 1�111�111 = 1�234�567�654�321
11�111�111 � 11�111�111 = 123�456�787�654�321

111�111�111 � 111�111�111 = 12�345�678�987�654�321
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1 � 8 + 1 = 9
12 � 8 + 2 = 98

123 � 8 + 3 = 987
1�234 � 8 + 4 = 9�876

12�345 � 8 + 5 = 98�765
123�456 � 8 + 6 = 987�654

1�234�567 � 8 + 7 = 9�876�543
12�345�678 � 8 + 8 = 98�765�432

123�456�789 � 8 + 9 = 987�654�321

Notice (below) how various products of 76,923 yield numbers in the same
order but with a different starting point. Here the first digit of the product
goes to the end of the number to form the next product. Otherwise, the
order of the digits is intact.

76�923 � 1 = 076�923
76�923 � 10 = 769�230
76�923 � 9 = 692�307
76�923 � 12 = 923�076
76�923 � 3 = 230�769
76�923 � 4 = 307�692

Notice (below) how various products of 76,923 yield different numbers
from those above, yet again, in the same order but with a different starting
point. Again, the first digit of the product goes to the end of the number
to form the next product. Otherwise, the order of the digits is intact.

76�923 � 2 = 153�846
76�923 � 7 = 538�461
76�923 � 5 = 384�615
76�923 � 11 = 846�153
76�923 � 6 = 461�538
76�923 � 8 = 615�384

Another peculiar number is 142,857. When it is multiplied by the numbers
2 through 8, the results are astonishing. Consider the following products
and describe the peculiarity.
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142�857 � 2 = 285�714
142�857 � 3 = 428�571
142�857 � 4 = 571�428
142�857 � 5 = 714�285
142�857 � 6 = 857�142

You can see symmetries in the products but notice also that the same
digits are used in the product as in the first factor. Furthermore, consider
the order of the digits. With the exception of the starting point, they are
in the same sequence.

Now look at the product, 142�857 � 7 = 999�999. Surprised?

It gets even stranger with the product, 142�857 � 8 = 1�142�856. If we
remove the millions digit and add it to the units digit, the original number
is formed.

It would be wise to allow the students to discover the patterns themselves.
You can present a starting point or a hint at how they ought to start and
then let them make the discoveries themselves. This will give them a sense
of “ownership” in the discoveries. These are just a few numbers that yield
strange products.
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1.2 Surprising Number Patterns II

Here are some more charmers of mathematics that depend on the surpris-
ing nature of its number system. Again, not many words are needed to
demonstrate the charm, for it is obvious at first sight. Just look, enjoy, and
share these amazing properties with your students. Let them appreciate
the patterns and, if possible, try to look for an “explanation” for this.

12345679 � 9 = 111�111�111
12345679 � 18 = 222�222�222
12345679 � 27 = 333�333�333
12345679 � 36 = 444�444�444
12345679 � 45 = 555�555�555
12345679 � 54 = 666�666�666
12345679 � 63 = 777�777�777
12345679 � 72 = 888�888�888
12345679 � 81 = 999�999�999

In the following pattern chart, notice that the first and last digits of the
products are the digits of the multiples of 9.

987654321 � 9 = 08 888 888 889
987654321 � 18 = 17 777 777 778
987654321 � 27 = 26 666 666 667
987654321 � 36 = 35 555 555 556
987654321 � 45 = 44 444 444 445
987654321 � 54 = 53 333 333 334
987654321 � 63 = 62 222 222 223
987654321 � 72 = 71 111 111 112
987654321 � 81 = 80 000 000 001

It is normal for students to want to find extensions of this surprising
pattern. They might experiment by adding digits to the first multiplicand
or by multiplying by other multiples of 9. In any case, experimentation
ought to be encouraged.
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1.3 Surprising Number Patterns III

Here are some more charmers of mathematics that depend on the surpris-
ing nature of its number system. Again, not many words are needed to
demonstrate the charm, for it is obvious at first sight. Just look, enjoy,
and spread these amazing properties to your students. Let them appreciate
the patterns and, if possible, try to look for an “explanation” for this. You
might ask them why multiplying by 9 might give such unusual results.
Once they see that 9 is one less than the base 10, they might get other
ideas to develop multiplication patterns. A clue might be to have them
consider multiplying by 11 (one greater than the base) to search for a
pattern.

0 � 9 + 1 = 1
1 � 9 + 2 = 11

12 � 9 + 3 = 111
123 � 9 + 4 = 1�111

1�234 � 9 + 5 = 11�111
12�345 � 9 + 6 = 111�111

123�456 � 9 + 7 = 1�111�111
1�234�567 � 9 + 8 = 11�111�111

12�345�678 � 9 + 9 = 111�111�111

A similar process yields another interesting pattern. Might this give your
students more impetus to search further?

0 � 9 + 8 = 8
9 � 9 + 7 = 88

98 � 9 + 6 = 888
987 � 9 + 5 = 8�888

9�876 � 9 + 4 = 88�888
98�765 � 9 + 3 = 888�888

987�654 � 9 + 2 = 8�888�888
9�876�543 � 9 + 1 = 88�888�888

98�765�432 � 9 + 0 = 888�888�888
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Now the logical thing to inspect would be the pattern of these strange
products.

1 � 8 = 8
11 � 88 = 968

111 � 888 = 98568
1111 � 8888 = 9874568

11111 � 88888 = 987634568
111111 � 888888 = 98765234568

1111111 � 8888888 = 9876541234568
11111111 � 88888888 = 987654301234568

111111111 � 888888888 = 98765431901234568
1111111111 � 8888888888 = 987654321791234568

How might you describe this pattern? Let students describe it in their own
terms.

1.4 Surprising Number Patterns IV

Here are some more curiosities of mathematics that depend on the sur-
prising nature of its number system. Again, not many words are needed
to demonstrate the charm, for it is obvious at first sight. Yet in this case,
you will notice that much is dependent on the number 1,001, which is
the product of 7, 11, and 13. Furthermore, when your students multiply
1,001 by a three-digit number the result is nicely symmetric. For example,
987 � 1�001 = 987�987. Let them try a few of these on their own before
proceeding.

Now let us reverse this relationship: Any six-digit number composed of
two repeating sequences of three digits is divisible by 7, 11, and 13. For
example,

643�643
7

= 91�949
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643�643
11

= 58�513

643�643
13

= 49�511

We can also draw another conclusion from this interesting number 1�001.
That is, a number with six repeating digits is always divisible by 3� 7� 11,
and 13. Here is one such example. Have your students verify our conjec-
ture by trying others.

111�111
3

= 37�037

111�111
7

= 15�873

111�111
11

= 10�101

111�111
13

= 8�547

What other relationships can be found that play on the symmetric nature
of 1�001?
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1.5 Surprising Number Patterns V

Here are some more charmers of mathematics that depend on the sur-
prising nature of its number system. Again, not many words are needed
to demonstrate the charm, for it is obvious at first sight. These depend
on the property described in Unit 1.4 and the unusual property of the
number 9.

999�999 � 1 = 0�999�999
999�999 � 2 = 1�999�998
999�999 � 3 = 2�999�997
999�999 � 4 = 3�999�996
999�999 � 5 = 4�999�995
999�999 � 6 = 5�999�994
999�999 � 7 = 6�999�993
999�999 � 8 = 7�999�992
999�999 � 9 = 8�999�991
999�999 � 10 = 9�999�990

Again, the number 9, which owes some of its unique properties to the fact
that it is 1 less than the base 10, presents some nice peculiarities.

9 � 9 = 81
99 � 99 = 9�801

999 � 999 = 998�001
9�999 � 9�999 = 99�980�001

99�999 � 99�999 = 9�999�800�001
999�999 � 999�999 = 999�998�000�001

9�999�999 � 9�999�999 = 99�999�980�000�001

While playing with the number 9, you might ask your students to find an
eight-digit number in which no digit is repeated and which when multi-
plied by 9 yields a nine-digit number in which no digit is repeated. Here
are a few correct choices:

81�274�365 � 9 = 731�469�285
72�645�831 � 9 = 653�812�479
58�132�764 � 9 = 523�194�876
76�125�483 � 9 = 685�129�347
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1.6 Surprising Number Patterns VI

Here is another nice pattern to further motivate your students to search on
their own for other patterns in mathematics. Again, not many words are
needed to demonstrate the beauty of this pattern, for it is obvious at first
sight.

1 = 1 = 1 � 1 = 12

1 + 2 + 1 = 2 + 2 = 2 � 2 = 22

1 + 2 + 3 + 2 + 1 = 3 + 3 + 3 = 3 � 3 = 32

1 + 2 + 3 + 4 + 3 + 2 + 1 = 4 + 4 + 4 + 4 = 4 � 4 = 42

1 + 2 + 3 + 4 + 5 + 4 + 3 + 2 + 1 = 5 + 5 + 5 + 5 + 5 = 5 � 5 = 52

1 + 2 + 3 + 4 + 5 + 6 + 5 + 4 + 3 + 2 + 1 = 6 + 6 + 6 + 6 + 6 + 6 = 6 � 6 = 62

1 + 2 + 3 + 4 + 5 + 6 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 7 + 7 + 7 + 7 + 7 + 7 + 7 = 7 � 7 = 72

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 = 8 � 8 = 82

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 9 + 9 + 9 + 9 + 9 + 9 + 9 + 9 + 9 = 9 � 9 = 92

1.7 Amazing Power Relationships

Our number system has many unusual features built into it. Discovering
them can certainly be a rewarding experience. Most students need to be
coaxed to look for these relationships. This is where the teacher comes in.

You might tell them about the famous mathematician Carl Friedrich Gauss
(1777–1855), who had superior arithmetic abilities to see relationships and
patterns that eluded even the brightest minds. He used these uncanny skills
to conjecture and prove many very important mathematical theorems. Give
your students a chance to “discover” relationships. Don’t discourage the
trivial discoveries, for they could lead to more profound results later on.

Show them the following relationship and ask them to describe what is
going on here.

81 = �8 + 1�2 = 92
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Then ask them to see if there is another number for which this relationship
might hold true. Don’t wait too long before showing them the following.

4�913 = �4 + 9 + 1 + 3�3 = 173

By now the students should realize that the sum of the digits of this
number taken to a power equals the number. This is quite astonishing, as
they will see if they try to find other examples.

The list below will provide you with lots of examples of these unusual
numbers. Enjoy yourself!

Number (Sum of the digits)n Number (Sum of the digits)n

81 = 92 34,012,224 = 186

8,303,765,625 = 456

512 = 83 24,794,911,296 = 546

4,913 = 173 68,719,476,736 = 646

5,832 = 183

17,576 = 263 612,220,032 = 187

19,683 = 273 10,460,353,203 = 277

27,512,614,111 = 317

2,401 = 74 52,523,350,144 = 347

234,256 = 224 271,818,611,107 = 437

390,625 = 254 1,174,711,139,837 = 537

614,656 = 284 2,207,984,167,552 = 587

1,679,616 = 364 6,722,988,818,432 = 687

17,210,368 = 285 20,047,612,231,936 = 468

52,521,875 = 355 72,301,961,339,136 = 548

60,466,176 = 365 248,155,780,267,521 = 638

205,962,976 = 465

20�864�448�472�975�628�947�226�005�981�267�194�447�042�584�001= 20720
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1.8 Beautiful Number Relationships

Who said numbers can’t form beautiful relationships! Showing your stu-
dents some of these unique situations might give them the feeling that
there is more to “numbers” than meets the eye. They should be encour-
aged not only to verify these relationships, but also to find others that can
be considered “beautiful.”

Notice the consecutive exponents.

135 = 11 + 32 + 53

175 = 11 + 72 + 53

518 = 51 + 12 + 83

598 = 51 + 92 + 83

Now, taken one place further, we get

1�306 = 11 + 32 + 03 + 64

1�676 = 11 + 62 + 73 + 64

2�427 = 21 + 42 + 23 + 74

The next ones are really amazing. Notice the relationship between the
exponents and the numbers.∗

3�435 = 33 + 44 + 33 + 55

438�579�088 = 44 + 33 + 88 + 55 + 77 + 99 + 00 + 88 + 88

Now it’s up to the class to verify these and discover other beautiful
relationships.

∗ In the second illustration, you will notice that, for convenience and for the sake of this unusual
situation, we have considered 00 as though its value is 0, when, in fact, it is indeterminate.
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1.9 Unusual Number Relationships

There are a number of unusual relationships between certain numbers (as
represented in the decimal system). There is not much explanation for
them. Just enjoy them and see if your students can find others.

We are going to present pairs of numbers where the product and the sum
are reversals of each other. Present them one at a time to your students so
that they can really appreciate them.

The two numbers Their product Their sum
9 9 81 18
3 24 72 27
2 47 94 49
2 497 994 499

Ask students if they can find another pair of numbers that exhibits this
unusual property. (They may have difficulty with this.)

Here’s another strange relationship∗ �

1 = 1!
2 = 2!

145 = 1! + 4! + 5!
40�585 = 4! + 0! + 5! + 8! + 5!

(Remember that 0! = 1.)

That appears to be all of this sort that exists, so don’t bother having
students search for more.

∗ The exclamation mark is called a factorial and represents the product of consecutive integers
from 1 to the number before the factorial symbol. That is, n! = 1 � 2 � 3 � 4 · · · · · �n − 2��n − 1�n.
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1.10 Strange Equalities

There are times when the numbers speak more effectively than any expla-
nation. Here is one such case. Just have your students look at these equal-
ities and see if they can discover others of the same type.

11 + 61 + 81 = 15 = 21 + 41 + 91

12 + 62 + 82 = 101 = 22 + 42 + 92

11 + 51 + 81 + 121 = 26 = 21 + 31 + 101 + 111

12 + 52 + 82 + 122 = 234 = 22 + 32 + 102 + 112

13 + 53 + 83 + 123 = 2�366 = 23 + 33 + 103 + 113

11+51+81+121+181+191=63=21+31+91+131+161+201

12+52+82+122+182+192=919=22+32+92+132+162+202

13+53+83+123+183+193=15�057=23+33+93+133+163+203

14+54+84+124+184+194=260�755=24+34+94+134+164+204

Not much more one can say here. Your students will probably say Wow!
If that is achieved, then you have met your goal.
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1.11 The Amazing Number 1,089

This unit is about a number that has some truly exceptional properties. We
begin by showing how it just happens to “pop up” when least expected.
Begin by having your students, all working independently, select a three-
digit number (where the units and hundreds digits are not the same) and
follow these instructions:

1. Choose any three-digit number (where the units and hundreds digits
are not the same).

We will do it with you here by arbitrarily selecting 825.

2. Reverse the digits of this number you have selected.

We will continue here by reversing the digits of 825 to get 528.

3. Subtract the two numbers (naturally, the larger minus the smaller).

Our calculated difference is 825− 528 = 297.

4. Once again, reverse the digits of this difference.

Reversing the digits of 297 we get the number 792.

5. Now, add your last two numbers.

We then add the last two numbers to get 297 + 792 = 1�089.

Their result should be the same∗ as ours even though their starting num-
bers were different from ours.

They will probably be astonished that regardless of which numbers they
selected at the beginning, they got the same result as we did, 1,089.

How does this happen? Is this a “freak property” of this number? Did we
do something devious in our calculations?

∗ If not, then you made a calculation error. Check it.
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Unlike other numerical curiosities, which depended on a peculiarity of the
decimal system, this illustration of a mathematical oddity depends on the
operations. Before we explore (for the more motivated students) why this
happens, we want you to be able to impress your students with a further
property of this lovely number 1,089.

Let’s look at the first nine multiples of 1,089:

1�089 � 1 = 1�089

1�089 � 2 = 2�178

1�089 � 3 = 3�267

1�089 � 4 = 4�356

1�089 � 5 = 5�445

1�089 � 6 = 6�534

1�089 � 7 = 7�623

1�089 � 8 = 8�712

1�089 � 9 = 9�801

Do you notice a pattern among the products? Look at the first and ninth
products. They are the reverses of one another. The second and the eighth
are also reverses of one another. And so the pattern continues, until the
fifth product is the reverse of itself, known as a palindromic number.∗

Notice, in particular, that 1�089 � 9 = 9�801, which is the reversal of the
original number. The same property holds for 10�989 � 9 = 98�901, and
similarly, 109�989 � 9 = 989�901. Students will be quick to offer exten-
sions to this. Your students should recognize by now that we altered the
original 1,089 by inserting a 9 in the middle of the number, and extended
that by inserting 99 in the middle of the 1,089. It would be nice to con-
clude from this that each of the following numbers have the same property:
1,099,989, 10,999,989, 109,999,989, 1,099,999,989, 10,999,999,989, and
so on.

∗ We have more about palindromic numbers in Unit 1.16.
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As a matter of fact, there is only one other number with four or fewer
digits where a multiple of itself is equal to its reversal, and that is the num-
ber 2,178 (which just happens to be 2 � 1�089), since 2�178 � 4 = 8�712.
Wouldn’t it be nice if we could extend this as we did with the above
example by inserting 9s into the middle of the number to generate other
numbers that have the same property? Your students ought to be encour-
aged to try this independently and try to come to some conclusion. Yes,
it is true that

21�978 � 4 = 87�912

219�978 � 4 = 879�912

2�199�978 � 4 = 8�799�912

21�999�978 � 4 = 87�999�912

219�999�978 � 4 = 879�999�912

2�199�999�978 � 4 = 8�799�999�912
���

As if the number 1,089 didn’t already have enough cute properties, here
is another one that (sort of) extends from the 1,089: We will consider 1
and 89 and notice what happens when you take any number and get the
sum of the squares of the digits and continue the same way. Each time,
you will eventually reach 1 or 89. Take a look at some examples that
follow.

n = 30�

32 + 02 = 9 → 92 = 81 → 82 + 12 = 65 → 62 + 52 = 61 →
62 + 12 = 37 → 32 + 72 = 58 → 52 + 82 = 89 →
82 + 92 = 145 → 12 + 42 + 52 = 42 → 42 + 22 = 20 →
22 + 02 = 4 → 42 = 16 → 12 + 62 = 37 → 32 + 72 = 58 →
52 + 82 = 89 → . . .

Notice that, when we reached 89 for a second time, it is obvious that we
are in a loop and that we will continuously get back to 89. For each of
the following, we get into a loop that will continuously repeat.
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n = 31� 32 + 12 = 10 → 12 + 02 = 1 → 12 = 1

n = 32� 32 + 22 = 13 → 12 + 32 = 10 → 12 + 02 = 1 → 12 = 1

n = 33� 32 + 32 = 18 → 12 + 82 = 65 → 62 + 52 = 61 →
62 + 12 = 37 → 32 + 72 = 58 → 52 + 82 = 89 →
82 + 92 = 145 → 12 + 42 + 52 = 42 → 42 + 22 = 20 →
22 + 02 = 4 → 42 = 16 → 12 + 62 = 37 →
32 + 72 = 58 → 52 + 82 = 89 → . . .

n = 80� 82 + 02 = 64 → 62 + 42 = 52 → 52 + 22 = 29 →
22 + 92 = 85 → 82 + 52 = 89 → 82 + 92 = 145 →
12 + 42 + 52 = 42 → 42 + 22 = 20 → 22 + 02 = 4 →
42 = 16 → 12 + 62 = 37 → 32 + 72 = 58 →
52 + 82 = 89 → . . .

n = 81� 82 + 12 = 65 → 62 + 52 = 61 → 62 + 12 = 37 →
32 + 72 = 58 → 52 + 82 = 89 → 82 + 92 = 145 →
12 + 42 + 52 = 42 → 42 + 22 = 20 → 22 + 02 = 4 →
42 = 16 → 12 + 62 = 37 → 32 + 72 = 58 →
52 + 82 = 89 → . . .

n = 82� 82 + 22 = 68 → 62 + 82 = 100 → 12 + 02 + 02 = 1 →
12 = 1

n = 85� 82 + 52 = 89 → 82 + 92 = 145 → 12 + 42 + 52 = 42 →
42 + 22 = 20 → 22 + 02 = 4 → 42 = 16 →
12 + 62 = 37 → 32 + 72 = 58 → 52 + 82 = 89 → . . .

Now let’s return to the original oddity of the number 1,089. We assumed
that any number we chose would lead us to 1,089. Ask students how they
can be sure. Well, they could try all possible three-digit numbers to see if it
works. That would be tedious and not particularly elegant. An investigation
of this oddity is within reach of a good elementary algebra student. So for
the more ambitious students, who might be curious about this phenomenon,
we will provide an algebraic explanation as to why it “works.”
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We shall represent the arbitrarily selected three-digit number, htu, as
100h + 10t + u, where h represents the hundreds digit, t represents the
tens digit, and u represents the units digit.

Let h > u, which would be the case in either the number you selected or
the reverse of it. In the subtraction, u − h < 0; therefore, take 1 from the
tens place (of the minuend), making the units place 10 + u.

Since the tens digits of the two numbers to be subtracted are equal, and 1
was taken from the tens digit of the minuend, then the value of this digit
is 10�t − 1�. The hundreds digit of the minuend is h − 1, because 1 was
taken away to enable subtraction in the tens place, making the value of
the tens digit 10�t − 1� + 100 = 10�t + 9�.

We can now do the first subtraction:

100�h − 1� + 10�t + 9� + �u + 10�
100u + 10t + h

100�h − u − 1� + 10�9� + u − h + 10

Reversing the digits of this difference gives us

100�u − h + 10� + 10�9� + �h − u − 1�

Now adding these last two expressions gives us

100�9� + 10�18� + �10 − 1� = 1�089

It is important to stress that algebra enables us to inspect the arithmetic
process, regardless of the number.

Before we leave the number 1,089, we should point out to students that
it has one other oddity, namely,

332 = 1�089 = 652 − 562

which is unique among two-digit numbers.

By this time your students must agree that there is a particular beauty in
the number 1,089.
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1.12 The Irrepressible Number 1

This is not a trick. Yet mathematics does provide curiosities that appear
to be magic. This is one that has baffled mathematicians for many years
and still no one knows why it happens. Try it, you’ll like it—or at least
the students will!

Begin by asking your students to follow two rules as they work with any
arbitrarily selected number.

If the number is odd, then multiply by 3 and add 1.
If the number is even, then divide by 2.

Regardless of the number they select, they will always end up with 1,
after continued repetition of the process.

Let’s try it for the arbitrarily selected number 12:
12 is even; therefore, we divide by 2 to get 6.
6 is also even, so we again divide by 2 to get 3.
3 is odd; therefore, we multiply by 3 and add 1 to get 3 � 3 + 1 = 10.
10 is even, so we simply divide by 2 to get 5.
5 is odd, so we multiply by 3 and add 1 to get 16.
16 is even, so we divide by 2 to get 8.
8 is even, so we divide by 2 to get 4.
4 is even, so we divide by 2 to get 2.
2 is even, so we divide by 2 to get 1.

It is believed that, no matter which number we begin with (here we started
with 12), we will eventually get to 1. This is truly remarkable! Try it for
some other numbers to convince yourself that it really does work. Had we
started with 17 as our arbitrarily selected number, we would have required
12 steps to reach 1. Starting with 43 will require 29 steps. You ought to
have your students try this little scheme for any number they choose and
see if they can get the number 1.

Does this really work for all numbers? This is a question that has con-
cerned mathematicians since the 1930s, and to date no answer has been
found, despite monetary rewards having been offered for a proof of this
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conjecture. Most recently (using computers) this problem, known in the
literature as the “3n + 1” problem, has been shown to be true for the
numbers up to 1018 − 1.

For those who have been turned on by this curious number property, we
offer you a schematic that shows the sequence of start numbers 1–20.

Notice that you will always end up with the final loop of 4–2–1. That is,
when you reach 4 you will always get to the 1 and then were you to try to
continue after having arrived at the 1, you will always get back to the 1,
since, by applying the rule, 3 � 1 + 1 = 4 and you continue in the loop:
4–2–1.

We don’t want to discourage inspection of this curiosity, but we want to
warn you not to get frustrated if you cannot prove that it is true in all
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cases, for the best mathematical minds have not been able to do this for
the better part of a century! Explain to your students that not all that we
know or believe to be true in mathematics has been proved. There are still
many “facts” that we must accept without proof, but we do so knowing
that there may be a time when they will either be proved true for all cases,
or someone will find a case for which a statement is not true, even after
we have “accepted it.”

1.13 Perfect Numbers

In mathematics, is there anything more perfect than something else? Most
mathematics teachers constantly tell students that mathematics is perfect.
Well, now we will introduce perfection in numbers—as it is defined by
the mathematics community. According to tradition in number theory, we
have an entity called a “perfect number.” This is defined as a number equal
to the sum of its proper factors (i.e., all the factors except the number
itself). The smallest perfect number is 6, since 6 = 1 + 2 + 3, which is
the sum of all its proper factors.∗

The next larger perfect number is 28, since again 28 = 1+ 2+ 4+ 7+ 14.
And the next one is 496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248,
which is the sum of all the proper factors of 496.

The first four perfect numbers were known to the Greeks. They are 6, 28,
496, and 8,128.

It was Euclid who came up with a theorem to generalize how to find a
perfect number. He said that if 2k −1 is a prime number, then 2k−1�2k −1�
is a perfect number. This is to say, whenever we find a value of k that
gives us a prime for 2k − 1, then we can construct a perfect number.

∗ It is also the only number that is the sum and product of the same three numbers: 6 = 1 � 2 � 3 =
3! Also 6 = √

13 + 23 + 33. It is also interesting to notice that 1
1 = 1

2 + 1
3 + 1

6 . By the way, while
on the number 6, it is nice to realize that both 6 and its square, 36, are triangular numbers (see
Unit 1.17).
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We do not have to use all values of k, since if k is a composite number,
then 2k − 1 is also composite.∗

Using Euclid’s method for generating perfect numbers, we get the follow-
ing table:

Values of 2k−1�2k − 1� when 2k − 1
Values of k is a prime number

2 6
3 28
5 496
7 8,128

13 33,550,336
17 8,589,869,056
19 137,438,691,328

On observation, we notice some properties of perfect numbers. They all
seem to end in either a 6 or a 28, and these are preceded by an odd digit.
They also appear to be triangular numbers (see Unit 1.17), which are the
sums of consecutive natural numbers (e.g., 496 = 1 + 2 + 3 + 4 + · · · +
28 + 29 + 30 + 31�.

To take it a step further, every perfect number after 6 is the partial sum of
the series: 13 + 33 + 53 + 73 + 93 + 113 + · · · . For example, 28 = 13 + 33,
and 496 = 13 + 33 + 53 + 73. You might have your students try to find the
partial sums for the next perfect numbers.

We do not know if there are any odd perfect numbers, but none has been
found yet. Using today’s computers, we have much greater facility at
establishing more perfect numbers. Your students might try to find larger
perfect numbers using Euclid’s method.

∗ If k = pq, then 2k − 1 = 2pq − 1 = �2p − 1��2p�q−1� + 2p�q−2� + · · · + 1�. Therefore, 2k − 1 can
only be prime when k is prime, but this does not guarantee that when k is prime, 2k − 1 will also
be prime, as can be seen from the following values of k:

k 2 3 5 7 11 13

2k − 1 3 7 31 127 2,047 8,191

where 2�047 = 23 � 89 is not a prime and so doesn’t qualify.
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1.14 Friendly Numbers

What could possibly make two numbers friendly? Your students’ first
reaction might be numbers that are friendly to them. Remind them that
we are talking here about numbers that are “friendly” to each other. Well,
mathematicians have decided that two numbers are considered friendly
(or as often used in the more sophisticated literature, “amicable”) if the
sum of the proper divisors of one equals the second and the sum of the
proper divisors of the second number equals the first number.

Sounds complicated? Have your students look at the smallest pair of
friendly numbers: 220 and 284.

The proper divisors of 220 are 1� 2� 4� 5� 10� 11� 20� 22� 44� 55, and 110.
Their sum is 1+ 2+ 4+ 5+ 10+ 11+ 20+ 22+ 44+ 55+ 110 = 284.

The proper divisors of 284 are 1, 2, 4, 71, and 142, and their sum is
1 + 2 + 4 + 71 + 142 = 220.

This shows the two numbers are friendly numbers.

The second pair of friendly numbers to be discovered (by Pierre de
Fermat, 1601–1665) was 17,296 and 18,416:

17�296 = 24 � 23 � 47 and 18�416 = 24 � 1�151

The sum of the proper factors of 17,296 is

1 + 2 + 4 + 8 + 16 + 23 + 46 + 47 + 92 + 94 + 184 + 188 + 368

+ 376 + 752 + 1�081 + 2�162 + 4�324 + 8�648 = 18�416

The sum of the proper factors of 18,416 is

1 + 2 + 4 + 8 + 16 + 1�151 + 2�302 + 4�604 + 9�208 = 17�296



The Beauty in Numbers 25

Here are a few more friendly pairs of numbers:

1,184 and 1,210
2,620 and 2,924
5,020 and 5,564
6,232 and 6,368
10,744 and 10,856
9,363,584 and 9,437,056
111,448,537,712 and 118,853,793,424

Your students might want to verify the above pairs’ “friendliness”!

For the expert, the following is one method for finding friendly numbers.
Let

a = 3 � 2n − 1

b = 3 � 2n−1 − 1

c = 32 � 22n−1 − 1

where n is an integer greater than or equal to 2 and a� b, and c are all
prime numbers. Then 2nab and 2nc are friendly numbers.

(Notice that for n ≤ 200, the values of n = 2� 4, and
7 give us a� b, and c to be prime.)
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1.15 Another Friendly Pair of Numbers

We can always look for nice relationships between numbers. Some of
them are truly mind-boggling! Take, for example, the pair of numbers:
6,205 and 3,869.

Guide your students to do the following to verify these fantastic results.

6�205 = 382 + 692 and 3�869 = 622 + 052

Notice the pattern and then follow with these numbers:

5�965 = 772 + 062 and 7�706 = 592 + 652

Beyond the enjoyment of seeing this wonderful pattern, there isn’t much.
However, the manner in which this is presented to the class can make all
the difference!

1.16 Palindromic Numbers

It is sometimes nice to show your class some amusing mathematics that
parallels amusing word games. Think of it not as time wasted, but rather as
time spent to motivate youngsters to like mathematics more. A palindrome
is a word, phrase, or sentence that reads the same in both directions. Here
are a few amusing palindromes:

RADAR
REVIVER
ROTATOR

LEPERS REPEL
MADAM I’M ADAM
STEP NOT ON PETS

NO LEMONS, NO MELON
DENNIS AND EDNA SINNED
ABLE WAS I ERE I SAW ELBA

A MAN, A PLAN, A CANAL, PANAMA
SUMS ARE NOT SET AS A TEST ON ERASMUS
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Palindromic numbers are those that read the same in both directions. This
leads us to consider that dates can be a source for some symmetric inspec-
tion. For example, the year 2002 is a palindrome, as is 1991.∗ There
were several dates in October 2001 that appeared as palindromes when
written in American style: 10/1/01, 10/22/01, and others. In February,
Europeans had the ultimate palindromic moment at 8:02 p.m. on February
20, 2002, since they would have written it as 20.02, 20-02-2002. It is a
bit thought provoking to have students come up with other palindromic
dates. You might ask them to list the palindromic dates closest to one
another.

Looking further, the first four powers of 11 are palindromic numbers:

111 = 11

112 = 121

113 = 1�331

114 = 14�641

A palindromic number can be either a prime number or a composite num-
ber. For example, 151 is a prime palindrome and 171 is a composite
palindrome. Yet with the exception of 11, a palindromic prime must have
an odd number of digits. Have your students try to find some palindromic
primes.

It is interesting to show students how a palindromic number can be gen-
erated from any given number. All they need to do is to continually add
a number to its reversal (i.e., the number written in the reverse order of
digits) until a palindrome is arrived at.

∗ Those of us who have lived through 1991 and 2002 will be the last generation who will have
lived through two palindromic years for over the next 1,000 years (assuming the current level of
longevity).
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For example, a palindrome can be reached with a single addition such as
with the starting number 23:

23 + 32 = 55� a palindrome

Or it might take two steps, such as with the starting number 75:

75 + 57 = 132 132 + 231 = 363� a palindrome

Or it might take three steps, such as with the starting number 86:

86+68=154 154+451=605 605+506=1111� a palindrome

The starting number 97 will require six steps to reach a palindrome, while
the number 98 will require 24 steps. Be cautioned about using the starting
number 196; this one will go far beyond your capabilities to reach a
palindrome.

There are some lovely patterns when dealing with palindromic numbers.
For example, numbers that yield palindromic cubes are palindromic them-
selves.

Students should be encouraged to find more properties of palindromic
numbers∗—they’re fun to play with.

∗ One source for more information on palindromic numbers is A. S. Posamentier and J. Stepelman,
Teaching Secondary School Mathematics: Techniques and Enrichment Units, 6th ed. (Upper Saddle
River, NJ: Prentice Hall/Merrill, 2002), pp. 257–258.
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1.17 Fun with Figurate Numbers

How can numbers have a geometric shape? Well, although the numbers
do not have a geometric shape, some can be represented by dots that can
be put into a regular geometric shape. Let’s take a look at some of these
now.

Students should notice how the dots can be placed to form the shape of a
regular polygon.

From the following arrangements of these figurate numbers, you ought to
be able to discover some of their properties. It ought to be fun trying to
relate these numbers to one another. For example, the nth square number is
equal to the sum of the nth and the (n − 1)th triangular numbers. Another
example is that the nth pentagonal number is equal to the sum of the nth
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square number and the (n− 1)th triangular number. There are lots of other
such relationships to be found (or discovered!).

TRIANGULAR NUMBERS

15 10 63   1 

SQUARE

 

NUMBERS

25 16 9 4  1 

PENTAGONAL NUMBERS

35 22 12 5 1 

HEXAGONAL NUMBERS

45 28 15 6  1 

We can introduce students to oblong numbers, which look like n(n + 1),
or rectangular arrays of dots such as

1 � 2 = 2

2 � 3 = 6

3 � 4 = 12

4 � 5 = 20

5 � 6 = 30
���



The Beauty in Numbers 31

So here are some relationships involving oblong numbers; although exam-
ples are provided, your students should find additional examples to show
these may be true. The more sophisticated can try to prove they are true.

An oblong number is the sum of consecutive even integers:

2 + 4 + 6 + 8 = 20

An oblong number is twice a triangular number:

15 � 2 = 30

The sum of two consecutive squares and the square of the oblong between
them is a square:

9 + 16 + 122 = 169 = 132

The sum of two consecutive oblong numbers and twice the square between
them is a square:

12 + 20 + 2 � 16 = 64 = 82

The sum of an oblong number and the next square is a triangular number:

20 + 25 = 45

The sum of a square number and the next oblong number is a triangular
number:

25 + 30 = 55

The sum of a number and the square of that number is an oblong number:

9 + 81 = 90

Your students should now discover other connections between the various
figurate numbers presented here.
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1.18 The Fabulous Fibonacci Numbers

There aren’t many themes in mathematics that permeate more branches
of mathematics than the Fibonacci numbers. They come to us from
one of the most important books in Western history. This book, Liber
abaci, written in 1202 by Leonardo of Pisa, more popularly known as
Fibonacci (1180–1250),∗ or son of Bonacci, is the first European publi-
cation using the Hindu–Arabic numerals that are the basis for our base
10 number system. This alone would qualify it as a landmark book. How-
ever, it also contains a “harmless” problem about the regeneration of
rabbits. It is the solution of that problem that produces the Fibonacci
numbers.

You might have your students try to set up a chart and solve the problem
independently before progressing further. It may be stated as follows:

How many pairs of rabbits will be produced in a year, beginning
with a single pair, if in every month each pair bears a new pair,
which becomes productive from the second month on?

It is from this problem that the famous Fibonacci sequence emerged. If
we assume that a pair of baby (B) rabbits matures in one month to become

∗ Fibonacci was not a clergyman, as might be expected of early scientists; rather, he was a mer-
chant who traveled extensively throughout the Islamic world and took advantage of reading all
he could of the Arabic mathematical writings. He was the first to introduce the Hindu–Arabic
numerals to the Christian world in his Liber abaci (1202 and revised in 1228), which first cir-
culated widely in manuscript form and was first published in 1857 as Scritti di Leonardo Pisano
(Rome: B. Buoncompagni). The book is a collection of business mathematics, including linear and
quadratic equations, square roots and cube roots, and other new topics, seen from the European
viewpoint. He begins the book with the comment: “These are the nine figures of the Indians 9 8 7 6
5 4 3 2 1. With these nine figures, and with the symbol 0, which in Arabic is called zephirum, any
number can be written, as will be demonstrated below”. From here on, he introduces the decimal
position system for the first time in Europe. (Note: The word “zephirum” evolved from the Arabic
word as-sifr, which comes from the Sanskrit word, used in India as early as the fifth century,
“sunya,” referring to empty.)
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offspring-producing adults (A), then we can set up the following chart:
Number Number
of pairs of pairs
of adults of babies Total

Month Pairs (A) (B) pairs

January 1 A 1 0 1
��

February 1 A B 1 1 2
�� 

March 1 A B A 2 1 3
✚✚

April 1 A B A A B 3 2 5
✪✪ ❊❊ �� ❏❏

◗◗◗
May 1 A B A A B A B A 5 3 8

�� ✁✁ ✪✪ ✄✄ ❈❈ �� ❈❈ ❊❊
June 1 A B A A B A B A A B A A B 8 5 13

July 1 13 8 21

August 1 21 13 34

September 1 34 21 55

October 1 55 34 89

November 1 89 55 144

December 1 144 89 233

January 1 233 144 377

The number of pairs of mature rabbits living each month determines
the Fibonacci sequence (column 1): 1� 1� 2� 3� 5� 8� 13� 21� 34� 55� 89,
144� 233� 377� � � � .

If we let fn be the nth term of the Fibonacci sequence, then

f1 = 1
f2 = 1
f3 = f2 + f1 = 1 + 1 = 2
f4 = f3 + f2 = 2 + 1 = 3
f5 = f4 + f3 = 3 + 2 = 5

���
���

fn = fn−1 + fn−2 for n an integer ≥ 3

That is, each term after the first two terms is the sum of the two preceding
terms.
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Your students may (rightly) ask at this point, What makes this sequence
of numbers so spectacular? For one thing, there is a direct relationship
between (believe it or not) it and the Golden Section! Consider successive
quotients of the Fibonacci numbers:

fn+1

fn

fn+1

fn

1
1

= 1�000000000
55
34

= 1�617647059

2
1

= 2�000000000
89
55

= 1�6182181618

3
2

= 1�500000000
144
89

= 1�617977528

5
3

= 1�666666667
233
144

= 1�618055556

8
5

= 1�600000000
377
233

= 1�618025751

13
8

= 1�625000000
610
377

= 1�618037135

21
13

= 1�615384615
987
610

= 1�618032787

34
21

= 1�619047619

Furthermore, you can refer students to Unit 4.8 to notice that successive
powers of �∗ present us with the Fibonacci numbers.

�2 = � + 1

�3 = 2� + 1

�4 = 3� + 2

�5 = 5� + 3

�6 = 8� + 5

�7 = 13� + 8

∗� represents the Golden Ratio.
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If, by now, the students didn’t see the connection, highlight the coefficients
and the constants. This is quite incredible; two completely (seemingly)
unrelated things suddenly in close relationship to one another. That’s what
makes mathematics so wonderful!

1.19 Getting into an Endless Loop

This unit demonstrates an unusual phenomenon that arises out of the pecu-
liarities of our decimal number system. There isn’t much you can do with
it, other than to marvel at the outcome. This is not something we can prove
true for all cases; yet no numbers have been found for which it won’t
work. That, in itself, suffices to establish that it is apparently always true.
You may wish to have your students use a calculator, unless you want
them to have practice in subtraction. Here is how this procedure goes:

Begin by having them select a four-digit number (except one that has
all digits the same).

Rearrange the digits of the number so that they form the largest number
possible. Then rearrange the digits of the number so that they form
the smallest number possible.

Subtract these two numbers (obviously, the smaller from the larger).
Take this difference and continue the process, over and over and over,
until you notice something disturbing happening. Don’t give up before
something unusual happens.

Eventually, you will arrive at the number 6,174, perhaps after one sub-
traction or after several subtractions. When you do, you will find yourself
in an endless loop.

When you have reached the loop, remind students that they began with
a randomly selected number. Isn’t this quite an astonishing result? Some
students might be motivated to investigate this further. Others will just sit
back in awe. Either way, they have been charmed again with the beauty
of mathematics.

Here is an example of this activity.
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We will (randomly) select the number 3,203.

The largest number formed with these digits is 3,320.
The smallest number formed with these digits is 0,233.
The difference is 3,087.

The largest number formed with these digits is 8,730.
The smallest number formed with these digits is 0,378.
The difference is 8,352.

The largest number formed with these digits is 8,532.
The smallest number formed with these digits is 2,358.
The difference is 6,174.

The largest number formed with these digits is 7,641.
The smallest number formed with these digits is 1,467.
The difference is 6,174.

And so the loop is formed, since you keep getting 6,174 if you continue.

1.20 A Power Loop

Can you imagine that a number is equal to the sum of the cubes of its
digits? Take the time to explain exactly what this means. This should begin
to “set them up” for this most unusual phenomenon. By the way, this is
true for only five numbers. Below are these five most unusual numbers.

1 → 13 = 1

153 → 13 + 53 + 33 = 1 + 125 + 27 = 153

370 → 33 + 73 + 03 = 27 + 343 + 0 = 370

371 → 33 + 73 + 13 = 27 + 343 + 1 = 371

407 → 43 + 03 + 73 = 64 + 0 + 343 = 407

Students should take a moment to appreciate these spectacular results and
take note that these are the only such numbers for which this is true.

Taking sums of the powers of the digits of a number leads to interesting
results. We can extend this procedure to get a lovely (and not to mention,
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surprising) technique you can use to have students familiarize themselves
with powers of numbers and at the same time try to get to a startling
conclusion.

Have them select any number and then find the sum of the cubes of the
digits, just as we did previously. Of course, for any other number than
those above, they will have reached a new number. They should then
repeat this process with each succeeding sum until they get into a “loop.”
A loop can be easily recognized. When they reach a number that they
reached earlier, then they are in a loop. This will become clearer with an
example.

Let’s begin with the number 352 and find the sum of the cubes of the
digits.

The sum of the cubes of the digits of 352 is 33 + 53 + 23 = 27 + 125 +
8 = 160. Now we use this sum, 160, and repeat the process:

The sum of the cubes of the digits of 160 is 13 +63 +03 = 1+216+0 =
217. Again repeat the process with 217:

The sum of the cubes of the digits of 217 is 23 +13 +73 = 8+1+343 =
352. Surprise! This is the same number (352) we started with.

You might think it would have been easier to begin by taking squares.
You are in for a surprise. Let’s try this with the number 123.

Beginning with 123, the sum of the squares of the digits is 12 + 22 + 32 =
1 + 4 + 9 = 14.

1. Now using 14, the sum of the squares of the digits is 12 + 42 =
1 + 16 = 17.

2. Now using 17, the sum of the squares of the digits is 12 + 72 =
1 + 49 = 50.

3. Now using 50, the sum of the squares of the digits is 52 + 02 = 25.
4. Now using 25, the sum of the squares of the digits is 22 + 52 =

4 + 25 = 29.
5. Now using 29, the sum of the squares of the digits is 22 + 92 = 85.
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6. Now using 85, the sum of the squares of the digits is 82 + 52 =
64 + 25 = 89.

7. Now using 89, the sum of the squares of the digits is 82 + 92 =
64 + 81 = 145.

8. Now using 145, the sum of the squares of the digits is 12 + 42 + 52 =
1 + 16 + 25 = 42.

9. Now using 42, the sum of the squares of the digits is 42 + 22 =
16 + 4 = 20.

10. Now using 20, the sum of the squares of the digits is 22 + 02 = 4�
11. Now using 4, the sum of the squares of the digits is 42 = 16�
12. Now using 16, the sum of the squares of the digits is 12 + 62 =

1 + 36 = 37.
13. Now using 37, the sum of the squares of the digits is 32 + 72 =

9 + 49 = 58.
14. Now using 58, the sum of the squares of the digits is 52 + 82 =

25 + 64 = 89.

Notice that the sum, 89, that we just got in step 14 is the same as in step
6, and so a repetition will now begin after step 14. This indicates that we
would continue in a loop.

Students may want to experiment with the sums of the powers of the
digits of any number and see what interesting results it may lead to. They
should be encouraged to look for patterns of loops, and perhaps determine
the extent of a loop based on the nature of the original number.

In any case, this intriguing unit can be fun just as it is presented here or
it can be a source for further investigation by interested students.
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1.21 A Factorial Loop

This charming little unit will show an unusual relationship for certain
numbers. Before beginning, however, review with your class the definition
of n!.

n! = 1 · 2 · 3 · 4 · · · �n − 1� · n

Now that they have an understanding of the factorial concept, have them
find the sum of the factorials of the digits of 145.

1! + 4! + 5! = 1 + 24 + 120 = 145

Surprise! We’re back to 145.

Only for certain numbers, will the sum of the factorials of the digits equal
the number itself.

Have your students try this again with the number 40,585:

4! + 0! + 5! + 8! + 5! = 24 + 1 + 120 + 40�320 + 120 = 40�585

At this point, students will expect this to be true for just about any number.
Well, just let them try another number. Chances are that it will not work.

Now have them try this scheme with the number 871. They will get

8! + 7! + 1! = 40�320 + 5�040 + 1 = 45�361

at which point they will feel that they have failed again.

Not so fast. Have them try this procedure again with 45,361. This will
give them

4! + 5! + 3! + 6! + 1! = 24 + 120 + 6 + 720 + 1 = 871

Isn’t this the very number we started with? Again, we formed a loop.

If they repeat this with the number 872, they will get

8! + 7! + 2! = 40�320 + 5�040 + 2 = 45�362



40 Math Wonders to Inspire Teachers and Students

Then repeating the process will give them

4! + 5! + 3! + 6! + 2! = 24 + 120 + 6 + 720 + 2 = 872�

Again, we’re in a loop.

Students are usually quick to form generalizations, so they might conclude
that if the scheme of summing factorials of the digits of a number doesn’t
get you back to the original number then try it again and it ought to work.
Of course, you can “stack the deck” by giving them the number 169 to try.
Two cycles do not seem to present a loop. So have them proceed through
one more cycle. And sure enough, the third cycle leads them back to the
original number.

Starting number Sum of the factorials

169 1! + 6! + 9! = 363�601
363,601 3! + 6! + 3! + 6! + 0! + 1!

= 6 + 720 + 6 + 720 + 1 + 1 = 1�454
1,454 1! + 4! + 5! + 4!

= 1 + 24 + 120 + 24 = 169

Be careful about having students draw conclusions. These factorial oddi-
ties are not so pervasive that you should tell students to find others. There
are “within reach” three groups of such loops. We can organize them
according to the number of times you have to repeat the process to reach
the original number. We will call these repetitions “cycles.”

Here is a summary of the way our numbers behave in this factorial loop.

1 cycle 1, 2, 145, 40,585
2 cycle 871, 45,361 and 872, 45,362
3 cycle 169, 363,601, 1,454

The factorial loops shown in this charming little number oddity can be
fun, but students must be cautioned that there are no other such numbers
less than 2,000,000 for which this works. So let them not waste their time.
Just appreciate some little beauties!
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1.22 The Irrationality of
√
2

When we say that
√
2 is irrational, what does that mean? Students should

be encouraged to inspect the word “irrational” to determine its meaning
in English.

Irrational means not rational.
Not rational means it cannot be expressed as a ratio of two integers.
Not expressible as a ratio means it cannot be expressed as a common
fraction.

That is, there is no fraction a
b

= √
2 (where a and b are integers).

If we compute
√
2 with a calculator we will get

√
2 = 1�41421356237309504880168872420969807856967187537694

8073176679737990732478462107038850387534327641572 · · ·
Notice that there is no pattern among the digits, and there is no repetition
of groups of digits. Does this mean that all rational fractions will have a
period of digits∗? Let’s inspect a few common fractions.

1
7

= 0�142857142857142857142857 · · ·

which can be written as 0�142857 (a six-digit period).

Suppose we consider the fraction 1
109 :

1
109

= 0�009174311926605504587155963302752293577981651376

14678899082568807339449541284403669724770642201834

8623 · · ·
Here we have calculated its value to more than 100 places and no period
appears. Does this mean that the fraction is irrational? This would destroy
our previous definition. We can try to calculate the value a bit more

∗ A period of a sequence of digits is a group of repeating digits.
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accurately, that is, say, to another 10 places further:

1
109

= 0�00917431192660550458715596330275229357798165137614

6788990825688073394495412844036697247706422018348623

8532110091

Suddenly it looks as though a pattern may be appearing; the 0091 also
began the period.

We carry out our calculation further to 220 places and notice that, in fact,
a 108-digit period emerges:

1
109

= 0�0091743119266055045871559633027522935779816513761

467889908256880733944954128440366972477064220183486

238532110091743119266055045871559633027522935779816

513761467889908256880733944954128440366972477064220

18348623853211009174

If we carry out the calculation to 332 places, the pattern becomes clearer:

1
109

= 0�009174311926605504587155963302752293577981651376

14678899082568807339449541284403669724770642201834

86238532110091743119266055045871559633027522935779

81651376146788990825688073394495412844036697247706

42201834862385321100917431192660550458715596330275

22935779816513761467889908256880733944954128440366

97247706422018348623853211009174

We might be able to conclude (albeit without proof) that a common frac-
tion results in a decimal equivalent that has a repeating period of digits.
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Some common ones we are already familiar with, such as

1
3

= 0�333333333

1
13

= 0�0769230769230769230769230769230

To this point, we saw that a common fraction will result in a repeating
decimal, sometimes with a very long period (e.g., 1

109 ) and sometimes with
a very short period (e.g., 1

3 ). It would appear, from the rather flimsy evi-
dence so far, that a fraction results in a repeating decimal and an irrational
number does not. Yet this does not prove that an irrational number cannot
be expressed as a fraction.

Here is a cute proof that
√
2 cannot be expressed as a common fraction

and therefore, by definition is irrational.

Suppose a
b is a fraction in lowest terms, which means that a and b

do not have a common factor.
Suppose a

b = √
2. Then a2

b2 = 2, or a2 = 2b2, which implies that a2

and a are divisible by 2; written another way, a = 2r, where r is an
integer.
Then 4r2 = 2b2, or 2r2 = b2.
So we have b2 or b is divisible by 2.
This contradicts the beginning assumption about the fact that a and
b have no common factor, so

√
2 cannot be expressed as a common

fraction.

Understanding this proof may be a bit strenuous for some students, but a
slow and careful step-by-step presentation should make it understandable
for most algebra students.
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1.23 Sums of Consecutive Integers

Ask your students: Which numbers can be expressed as the sum of con-
secutive integers? You may have your students try to establish a rule for
this by trying to express the first batch of natural numbers as the sum of
consecutive integers. We will provide some in the following list.

2 = not possible 21 = 1 + 2 + 3 + 4 + 5 + 6
3 = 1 + 2 22 = 4 + 5 + 6 + 7
4 = not possible 23 = 11 + 12
5 = 2 + 3 24 = 7 + 8 + 9
6 = 1 + 2 + 3 25 = 12 + 13
7 = 3 + 4 26 = 5 + 6 + 7 + 8
8 = not possible 27 = 8 + 9 + 10
9 = 4 + 5 28 = 1 + 2 + 3 + 4 + 5 + 6 + 7
10 = 1 + 2 + 3 + 4 29 = 14 + 15
11 = 5 + 6 30 = 4 + 5 + 6 + 7 + 8
12 = 3 + 4 + 5 31 = 15 + 16
13 = 6 + 7 32 = not possible
14 = 2 + 3 + 4 + 5 33 = 10 + 11 + 12
15 = 4 + 5 + 6 34 = 7 + 8 + 9 + 10
16 = not possible 35 = 17 + 18
17 = 8 + 9 36 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8
18 = 5 + 6 + 7 37 = 18 + 19
19 = 9 + 10 38 = 8 + 9 + 10 + 11
20 = 2 + 3 + 4 + 5 + 6 39 = 19 + 20

40 = 6 + 7 + 8 + 9 + 10

These consecutive number sum representations are clearly not unique.
For example, 30 can be expressed in other ways such as 9 + 10 + 11
or 6 + 7 + 8 + 9. An inspection of the table shows that those where a
consecutive number sum was not possible were the powers of 2.

This is an interesting fact. It is not something that one would expect. By
making a list of these consecutive number sums, students will begin to see
patterns. Clearly, the triangular numbers are equal to the sum of the first
n natural numbers. A multiple of 3, say 3n, can always be represented
by the sum: �n − 1� + n + �n + 1�. Students will discover other patterns.
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That’s part of the fun of it (not to mention its instructional value—seeing
number patterns and relationships).

For the more ambitious students, we now will provide a proof of this
(until-now) conjecture. First, we will establish when a number can be
expressed as a sum of at least two consecutive positive integers.

Let us analyze what values can be taken by the sum of (two or more)
consecutive positive integers from a to b (b > a)

S =a+�a+1�+�a+2�+···+�b−1�+b=
(a+b

2

)
�b−a+1�

by applying the formula for the sum of an arithmetic series.∗ Then, dou-
bling both sides, we get:

2S = �a + b��b − a + 1�

Calling �a + b� = x and �b − a + 1� = y, we can note that x and y are
both integers and that since their sum, x + y = 2b + 1, is odd, one of x,
y is odd and the other is even. Note that 2S = xy.

Case 1 S is a power of 2.

Let S = 2n. We have 2�2n� = xy, or 2n+1 = xy. The only way we can
express 2n+1 as a product of an even and an odd number is if the odd
number is 1. If x = a + b = 1, then a and b cannot be positive integers.
If y = b − a + 1 = 1, then we have a = b, which also cannot occur.
Therefore, S cannot be a power of 2.

Case 2 S is not a power of 2.

Let S = m2n, where m is an odd number greater than 1. We have
2�m2n� = xy, or m2n+1 = xy. We will now find positive integers a and b
such that b > a and S = a + �a + 1� + · · · + b.

The two numbers 2n+1 and m are not equal, since one is odd and the
other is even. Therefore, one is bigger than the other. Assign x to be

∗ S = n
2 �a + l�, where n is the number of terms and a is the first term and l is the last term.
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the bigger one and y to be the smaller one. This assignment gives us a
solution for a and b, as x + y = 2b + 1, giving a positive integer value
for b, and x − y = 2a − 1, giving a positive integer value for a. Also,
y = b − a + 1 > 1, so b > a, as required. We have obtained a and b.

Therefore, for any S that is not a power of 2, we can find positive integers
a and b, b > a, such that S = a + �a + 1� + · · · + b.

In conclusion, a number can be expressed as a sum of (at least two)
consecutive positive integers if and only if the number is not a power of 2.


