Altshiller-Court, N. A. (1952). *College geometry*. New York: Barnes & Noble.

Barnett, I. A. (1972). *Elements of number theory*. Boston: Prindle, Weber, & Schmidt.

Bell, E. T. (1937). *Men of mathematics*. New York: Simon & Schuster.

Berggren, L., Borwein, J., & Borwein, P. (1997). *Pi: A source book*. New York: Springer.

Boston, C. (2002). ERIC Clearinghouse on Assessment and Evaluation, College Park, MD. (ED470206, 2002-10-00).

Bruckheimer, M., & Hirshkowitz, R. (1977). Mathematics projects in junior high school.
*Mathematics Teacher, 70*, 573.

Brumbaugh, D. K., Ashe, D. E., Ashe, J. L., & Rock, D. (1997). *Teaching secondary mathematics*. Mahwah, NJ: Erlbaum.

Cherkas, B. (1993, February). *Humanizing the multiple choice test with partial credit*. Melbourne, FL: Research Council for Diagnostic/Prescriptive Mathematics.

Chrystal, G. (1964). *Textbook of algebra*. New York: Chelsea.

Courant, R., & Robbins, H. (1941). *What is mathematics?* New York: Oxford University Press.

Coxeter, H. S. M., & Greitzer, S. L. (1967). *Geometry revisited*. New York: Random House.

Davis, D. R. (1949). *Modern college geometry*. Reading, MA: Addison-Wesley.

Diggins, J. E. (1965). *String, straight-edge, and shadow: The story of geometry*. New York: Viking Press.

Dudley, U. (1987). *A budget of trisections*. New York: Springer.

Elgarten, G. H. (1976). A mathematics intramurals contest. *Mathematics Teacher, 69*, 477.

Farmer, D. W., & Sandford, T. B. (1996). *Knots and surfaces: A guide to discovering mathematics*. Providence, RI: American Mathematical Society.

Gorini, C. A. (Ed.). (2000). *Geometry at work: A collection of papers showing applications of geometry*. Washington, DC: Mathematical Association of America.

Hall, H. S., & Knight, S. R. (1960). *Higher algebra*. London: Macmillan.

Holmes, J. E. (1970, October). Enrichment or acceleration? *Mathematics Teacher, 63*(6), 471–473.

House, P. A. (1980). *Interactions of science and mathematics*. Columbus, OH: ERIC Clearing House for Science, Mathematics, and Environmental Education.

Ippolito, D. (1999, April). The mathematics of the spirograph. *Mathematics Teacher, 92*(4), 354–357.

James, R. C., & James, G. (Eds.). (1976). *Mathematics dictionary* (4th ed.). New York: Van Nostrand Reinhold.

Johnson, R. A. (1929). *Modern geometry*. Boston: Houghton Mifflin.

Jones, M. H. (1983, October). Mathcounts: A new junior high school mathematics competition. *Mathematics Teacher, 76*(7), 482–485.

Karush, W. (1962). *The crescent dictionary of mathematics*. New York: Macmillan.

Krulik, S., & Rudnick, J. (1998). *Assessing reasoning and problem solving: A sourcebook for elementary school teachers*. Boston, MA: Allyn & Bacon.

Krulik, S., Rudnick, J., & Milou, E. (2003). *Teaching mathematics in middle school: A practical guide*. Boston: Allyn & Bacon.

Leonard, W. A. (1977). No upper limit: The challenge of the teacher of secondary mathematics. Fresno, CA: Creative Teaching Association.

Lichtenberg, B. K. (1981). Some excellent sources of material for mathematics clubs.
*Mathematics Teacher, 74*, 284.

Loomis, E. S. (1968). *The Pythagorean proposition*. Reston, VA: National Council of Teachers of Mathematics.

Loy, J. (1997). The Pythagorean theorem. Retrieved August 2, 2006, from http://www.jimloy.com/geometry/pythag.htm

Madachy, J. S. (1979). *Madachy's mathematical recreations*. New York: Dover Paperbacks.

Magic Squares. http://www.magic-squares.de/general/squares/squares.html

Martin, G. E. (1998). *Geometric constructions*. New York: Springer.

Mathematics League. (2006). The Math League [home page]. Retrieved August 2, 2006, from http://www.mathleague.com

Morgan, F. (2000). *The math chat book*. Washington, DC: Mathematical Association of America.

Morgan, F., Melnick, E. R., & Nicholson, R. (1997, December). The soap-bubble-geometry contest. *Mathematics Teacher, 90*(9), 746–750.

National Council of Teachers of Mathematics. (1980). *An agenda for action: Recommendations for school mathematics of the 1980's*. Reston, VA: Author.

National Council of Teachers of Mathematics. (1989). *Curriculum and evaluation standards for school mathematics*. Reston, VA: Author.

National Council of Teachers of Mathematics. (1991). *Professional standards for teaching mathematics*. Reston, VA: Author.

National Council of Teachers of Mathematics. (1995). *Assessment standards for school mathematics*. Reston, VA: Author.

National Council of Teachers of Mathematics. (2000). *Principles and standards for school mathematics*. Reston, VA: Author.

National Council of Teachers of Mathematics. (n.d.). Grants and awards. Retrieved August 2, 2006, from http://www.nctm.org/about/grants.htm

National Council of Teachers of Mathematics. (n.d.). NCTM Illuminations Project [home page]. Retrieved August 2, 2006, from http://illuminations.nctm.org/

National Science Foundation. (n.d.). The Presidential Awards for Excellence in Mathematics and Science Teaching [home page]. Retrieved August 2, 2006, from http://paemst.org/Program.cfm

Newman, J. R. (1956). *The world of mathematics*. New York: Simon & Schuster.

Olds, C. D. (1963). *Continued fractions*. New York: Random House.

Posamentier, A. S. (2000a). *Making algebra come alive*. Thousand Oaks, CA: Corwin.

Posamentier, A. S. (2000b). *Making geometry come alive*. Thousand Oaks, CA: Corwin.

Posamentier, A. S. (2000c). *Making pre-algebra come alive*. Thousand Oaks, CA: Corwin.

Posamentier, A. S. (2002). *Advanced Euclidean geometry: Excursions for secondary students and teachers*. Emeryville, CA: Key College Press.

Posamentier, A. S. (2003). *Math wonders to inspire teachers and students*. Alexandria, VA: Association for Supervision & Curriculum Development.

Posamentier, A. S., & Hauptman, H. A. (2006). *101 great ideas for introducing key concepts in mathematics* (2nd ed.). Thousand Oaks, CA: Corwin.

Posamentier, A. S., & Jaye, D. (2006). *What successful math teachers do*, *6–12*. Thousand Oaks, CA: Corwin.

Posamentier, A. S., & Lehmann, I. (2004). *π: A biography of the world's most mysterious number*. Amherst, NY: Prometheus Books.

Posamentier, A. S., & Lehmann, I. (2007). *The fabulous Fibonacci numbers*. Amherst, NY: Prometheus Books.

Posamentier, A. S., Smith, B. S., & Stepelman, J. (2006). *Teaching secondary mathematics: Techniques and enrichment units* (7th ed.). Upper Saddle River, NJ: Merrill/Prentice Hall.

Pythagoras Theorem. (n.d.). Retrieved August 2, 2006, from http://www.unisanet.unisa.edu.au/07305/pythag.htm

Sadovskii, L. E., & Sadovskii, A. L. (1996). *Mathematics and sports* (S. Makar-Limanov, Trans.). Providence, RI: American Mathematical Society.

Schaaf, W. L. (Ed.). (1978). *A bibliography of recreational mathematics*.Washington, DC: National Council of Teachers of Mathematics.

Smith, D. E., (Ed.). (1929). *Source book in mathematics*. New York: McGraw-Hill.

Stiggins, R. (2002). Assessment crisis: The absence of assessment FOR learning. *Phi Delta Kappan 88*(10), 758–765.

Third International Mathematics and Science Study (TIMSS). Available at http://nces.ed.gov./timss/

Weisstein, E. W. (1999). Franklin Magic Square. From *MathWorld—*A Wolfram Web Resource. Retrieved August 2, 2006, from http://mathworld.wolfram.com/FranklinMagicSquare.html

Wright, F. (1965). Motivating students with projects and teaching aids. *Mathematics Teacher, 58*, 47.

Ball, W. W. R. (1960). *A short account of the history of mathematics*. New York: Dover.

Bell, E. T. (1937). *Men of mathematics*. New York: Simon & Schuster.

Bell, E. T. (1979). *Mathematics, queen and servant of science*. Washington, DC: Mathematical Association of America.

Boyer, C. B. (1968). *A history of mathematics*. New York: Wiley.

Bunt, L. N. H., Jones, P. S., & Bedient, J. D. (1976). *The historical roots of elementary mathematics*. Englewood Cliffs, NJ: Prentice Hall.

Cajori, F. (1928). *A history of mathematic notations*. LaSalle, IL: Open Court.

Campbell, D. M., & Higgins, J. C. (Eds.). (1984). *Mathematics: people, problems, results*. Belmont, CA: Wadsworth.

Eves, H. (1976). *An introduction to the history of mathematics* (4th ed.). New York: Holt, Rinehart, & Winston.

Focus Issue on History. (2000, November). *Mathematics Teacher, 93*(8).

Gray, S. B., & Sandifer, C. E. (2001, February). The sumario compendioso: The new world's first mathematics book. *Mathematics Teacher, 94*(2), 98–103.

Hamburger, P., & Pippert, R. E. (2000, April). Venn said it couldn't be done. *Mathematics Magazine, 73*(2), 105–110.

Heath, T. L. (1963). *Greek mathematics*. New York: Dover.

Kaplan, R. (1999). *The nothing that is: A natural history of zero*. New York: Oxford University Press.

Kelley, L. (2000, January). A mathematical history tour. *Mathematics Teacher, 93*(1), 14–17.

Maor, E. (1994). *The story of a number*. Princeton, NJ: Princeton University Press.

Nahin, P. J. (1998). *An imaginary tale: The story of √-1*. Princeton, NJ: Princeton University Press.

Norwood, R. (1999, February). A star to guide us. *Mathematics Teacher, 92*(2), 100–101.

Posamentier, A. S., & Gordon, N. (1984, January). An astounding revelation on the history of π. *Mathematics Teacher, 77*(1), 52.

Posamentier, A. S., & Lehmann, I. (2004). *π: A biography of the world's most mysterious number*. Amherst, NY: Prometheus Books.

Posamentier, A. S., Smith, B. S., & Stepelman, J. (2006). *Teaching secondary school mathematics: Techniques and enrichment units* (7th ed.).Columbus, OH: Merrill/Prentice Hall.

Resnikoff, H. L., & Wells Jr., R. O. (1984). *Mathematics in civilization*. New York: Dover.

Seife, C. (2000). *Zero: The biography of a dangerous idea*. New York: Viking Penguin.

Smith, D. E. (1929). *A source book in mathematics*. New York: McGraw-Hill.

Smith, D. E. (1953). *History of mathematics*. New York: Dover.

van der Waerden, B. L. (1963). *Science awakening*. New York: Wiley.

Wiggins, G., & McTighe, J. (1998). *Understanding by design*. Alexandria, VA: Association for Supervision and Curriculum Development.

Ball, W. W. R., & Coxeter, H. S. M. (1960). *Mathematical recreations and essays*. New York: Macmillan.

Barbeau, E. J. (2000). *Mathematical fallacies, flaws, and flimflam*. Washington, DC: Mathematical Association of America.

Bay, J. M., Reys, R. E., Simms, K., & Taylor, P. M. (2000, March). Bingo games: Turning student intuitions into investigations in probability and number sense. *Mathematics Teacher, 93*(3), 200–206.

Beasley, J. D. (1976). *The mathematics of games*. New York: Oxford University Press.

Benson, W., & Jacoby, O. (1976). *New recreations with magic squares*. New York: Dover.

Caldwell, J. H. (1966). *Topics in recreational mathematics*. London: Cambridge University Press.

Cipra, B. (1989). *Misteaks . . . and how to find them before the teacher does*. San Diego, CA: Academic Press.

Cundy, H. M., & Rollett, A. P. (1961). *Mathematical models*. New York: Oxford University Press.

De Pillis, J. (2002). *777 mathematical conversation starters*. Washington, DC: Mathematical Association of America.

Gardner, M. (1995). *New mathematical diversions*. Washington, DC: Mathematical Association of America.

Honsberger, R. (1978). *Mathematical morsels*. Washington, DC: Mathematics Association of America.

Kahan, S. (1996). *Take a look at a good book: The third collection of additive alphametics for the connoisseur*. Amityville, NY: Baywood.

Kraitchik, M. (1942). *Mathematical recreations*. New York: Dover.

Madachy, J. (1966). *Mathematics on vacation*. New York: Scribner.

Nelsen, R. B. (2000). *Proofs without words 2: More exercises in visual thinking*. Washington, DC: Mathematical Association of America.

Northrop, E. (1944). *Riddles in mathematics*. Princeton, NJ: Van Nostrand.

Ogilvy, C. S. (1956). *Through the mathescope*. New York: Oxford University Press.

Pickover, C. A. (2001). *Wonders of numbers*. New York: Oxford University Press.

Posamentier, A. S. (1988). *Advanced geometric constructions*. White Plains, NY: Seymour.

Posamentier, A. S. (2000a). *Making algebra come alive*. Thousand Oaks, CA: Corwin.

Posamentier, A. S. (2000b). *Making geometry come alive*. Thousand Oaks, CA: Corwin.

Posamentier, A. S. (2000c). *Making pre-algebra come alive*. Thousand Oaks, CA: Corwin.

Posamentier, A. S. (2002). *Advanced Euclidean geometry: Excursions for secondary teachers and students*. Emeryville, CA: Key College Press.

Posamentier, A. S. (2003). *Math wonders to inspire teachers and students*. Alexandria, VA: Association for Supervision and Curriculum Development.

Posamentier, A. S., & Lehmann, I. (2004). *π: A biography of the world's most mysterious number*. Amherst, NY: Prometheus Books.

Schuh, F. (1968). *The master book of mathematical recreations*. New York: Dover.

Stevenson, F. W. (1992). *Exploratory problems in mathematics*. Reston, VA: National Council of Teachers of Mathematics.

Vanderlind, P., Guy, R., & Larson, L. (2002). *The inquisitive problem solver*. Washington, DC: Mathematical Association of America.

Carnahan, W. H. (Ed.). (1958). *Mathematics clubs in high schools*. Washington, DC: National Council of Teachers of Mathematics.

Devlin, K. (1994). *All the math that's fit to print*. (1994). Washington, DC: Mathematical Association of America.

Gruver, H. L. (1968). *School mathematics contests: A report*. Washington, DC: National Council of Teachers of Mathematics.

Hess, A. L. (1977). *Mathematics projects handbook*. Washington, DC: National Council of Teachers of Mathematics.

Morgan, F., Melnick, E. R., & Nicholson, R. (1997, December). The soap-bubble-geometry contest. *Mathematics Teacher, 90*(9), 746–750.

Mu Alpha Theta. (1970). *Handbook for sponsors*. Norman: University of Oklahoma.

Paulos, J. A. (1995). *A mathematician reads the newspaper*. New York: Basic Books.

Ransom, W. R. (1961). *Thirty projects for mathematical clubs and exhibitions*. Portland, ME: Walch.

Schumer, P. D. (2004). *Mathematical journeys*. Hoboken, NJ: Wiley.

Teppo, A. R., & Hodgson, T. (2001, February). Dinosaurs, dinosaur eggs, and probability.
*Mathematics Teacher, 94*(2), 86–92.

Andreescu, T., & Feng, Z. (2000). *Mathematical olympiads 1998–1999*.Washington, DC: Mathematical Association of America.

Artino, R. A., Gaglione, A. M., & Shell, N. (1982). *The contest problem book 4: Annual high school examinations, 1973–1982*. Washington, DC: Mathematical Association of America.

Berzsenyi, G., & Mauer, S. B. (1997). *The contest problem book 5: American high school mathematics examinations and American invitational mathematics examinations, 1983–1988*. Washington, DC: Mathematical Association of America.

Conference Board of Mathematical Sciences. (1966). *The role of axiomatics and problem solving in mathematics*. Boston: Ginn.

Gardiner, T. (1996). *Mathematical challenge*. Cambridge: Cambridge University Press.

Gardiner, T. (1997). *More mathematical challenges*. Cambridge: Cambridge University Press.

Hayes, J. R. (1989). *The complete problem solver* (2nd ed.). Hillsdale, NJ: Erlbaum.

Holton, D. (1993). *Let's solve some math problems*. Waterloo, ON, Canada: Waterloo Mathematics Foundation, University of Waterloo.

Honsberger, R. (1996). *From Erdös to Kiev, problems of olympiad caliber*. Washington, DC: Mathematical Association of America.

Hudgins, B. B. (1966). *Problem solving in the classroom*. New York: Macmillan.

Krantz, S. G. (1997). *Techniques of problem solving*. Providence, RI: American Mathematical Society.

Krulik, S., & Rudnick, J. A. (1980). *Problem solving: A handbook for teachers*. Boston: Allyn & Bacon.

Polya, G. (1945). *How to solve it*. Princeton, NJ: Princeton University Press.

Polya, G. (1954). *Mathematics and plausible reasoning*. Princeton, NJ: Princeton University Press.

Polya, G. (1962). *Mathematical discovery*. New York: Wiley.

Posamentier, A. S. (1996). *Students! Get ready for the mathematics for SAT I: Problem-solving strategies and practical tests*. Thousand Oaks, CA: Corwin.

Posamentier, A. S., & Krulik, S. (1996). *Teachers! Prepare your students for the mathematics for SAT I: Methods and problem-solving strategies*. Thousand Oaks, CA: Corwin.

Posamentier, A. S., & Krulik, S. (1998). *Problem-solving strategies for efficient and elegant solutions: A resource for the mathematics teacher*. Thousand Oaks, CA: Corwin.

Posamentier, A. S., & Schulz, W. (1996). *The art of problem solving: A resource for the mathematics teacher*. Thousand Oaks, CA: Corwin.

Schneider, L. J. (2000). *The contest problem book 6: American high school mathematics examinations 1989–1994*. Washington, DC: Mathematical Association of America.

Whimbey, A., & Lochhead, J. (1980). *Problem solving and comprehension: A short course in analytical reasoning* (2nd ed.). Philadelphia: Franklin Institute Press.

Wickelgren, W. A. (1974). *How to solve problems*. San Francisco: Freeman.

Zeitz, P. (1999). *The art and craft of problem solving*. New York: Wiley.

Andreescu, T., & Feng, Z. (2000). *Mathematical olympiads: Problems and solutions from around the world, 1998–1999*. Washington, DC: Mathematical Association of America.

Andreescu, T., & Feng, Z. (2001). *USA and international mathematical olympiads 2000*. Washington, DC: Mathematical Association of America.

Andreescu, T., & Feng, Z. (2002a). *Mathematical olympiads: Problems and solutions from around the world 1999–2000*. Washington, DC: Mathematical Association of America.

Andreescu, T., & Feng, Z. (2002b). *USA and international mathematical olympiads 2001*. Washington, DC: Mathematical Association of America.

Andreescu, T., & Feng, Z. (2003). *Mathematical olympiads: Problems and solutions from around the world 2000–2001*. Washington, DC: Mathematical Association of America.

Aref, M. N., & Wernick, W. (1968). *Problems and solutions in Euclidean geometry*. New York: Dover.

Artino, R. A., Gaglione, A. M., & Shell, N. (1982). *The contest problem book 4: Annual high school examinations, 1973–1982*. Washington, DC: Mathematical Association of America.

Barbeau, E., Klamkin, M., & Moser, W. (1975). *Five hundred mathematical challenges*. Washington, DC: Mathematical Association of America.

Barbeau, E., Klamkin, M., & Moser, W. (1978). *1001 problems in high school mathematics*. Montreal, QC, Canada: Canadian Mathematics Congress, 1978.

Barry, D. T., & Lux, J. R. (1984). *The Philips Academy prize examinations in mathematics*. Palo Alto, CA: Seymour.

Berzsenyi, G., & Mauer, S. B. (1997). *The contest problem book 5: American high school mathematics examinations and American invitational mathematics examinations, 1983–1988*. Washington, DC: Mathematical Association of America.

Brousseau, A. (Ed.). (1972). *Mathematics contest problems*. Palo Alto, CA: Creative Publications.

Bryant, S. J., Graham, G. E., & Wiley, K. G. (1965). *Nonroutine problems in algebra, geometry, and trigonometry*. New York: McGraw-Hill.

Butts, T. (1973). *Problem solving in mathematics*. Glenview, IL: Scott, Foresman.

Charosh, M. (Ed.). (1965). *Mathematical challenges*. Washington, DC: National Council of Teachers of Mathematics.

Dowlen, M., Powers, S., & Florence, H. (1987). *College of Charleston mathematics contest book*. Palo Alto, CA: Seymour.

Dunn, A. (Ed.). (1964). *Mathematical bafflers*. New York: McGraw-Hill.

Dunn, A. (Ed.). (1983). *Second book of mathematical bafflers*. New York: Dover.

Edwards, J. D., King, D. J., & O'Halloran, P. J. (1986). *All the best from the Australian mathematics competition*. Melbourne, Australia: Ruskin Press.

Engel, A. (1998). *Problem-solving strategies*. New York: Springer.

Fisher, L., & Kennedy, B. (1984). *Brother Alfred Brousseau problem-solving and mathematics competition: Introductory division*. Palo Alto, CA: Seymour.

Fisher, L., & Medigovich, W. (1984). *Brother Alfred Brousseau problem-solving and mathematics competition*. Palo Alto, CA: Seymour.

Gardiner, A. (1997). *The mathematical olympiad handbook: An introduction to problem solving*. New York: Oxford University Press.

Gillman, R. (Ed.) (2003). *A friendly mathematics competition: 35 years of teamwork in Indiana*. Washington, DC: Mathematical Association of America.

Greitzer, S. L. (1978). *International mathematical olympiads*. Washington, DC: Mathematical Association of America.

Hajós, G., Neukomm, G., & Surányi, J. (1963). *Hungarian problem book: Based on the Eötvös competitions, 1894–1928* (E. Rapaport, Trans.). New York: Random House.

Hajós, G., Neukomm, G., & Surányi, J. (2001). *Hungarian problem book 3: Based on the Eötvös Competition, 1929–1943* (A. Lui, Ed., Trans.). Washington, DC: Mathematical Association of America.

Hill, T. J. (Ed.). (1974). *Mathematical challenges 2: Plus six*. Washington, DC: National Council of Teachers of Mathematics.

Honsberger, R. (1997). *In Polya's footsteps: Miscellaneous problems and essays*. Washington, DC: Mathematical Association of America.

Polya, G., & Kilpatrick, J. (1974). *The Stanford mathematics book*. New York: Teachers College Press.

Posamentier, A. S., & Salkind, C. T. (1996). *Challenging problems in algebra*. New York: Dover.

Posamentier, A. S., & Salkind, C. T. (1996). *Challenging problems in geometry*. New York: Dover.

Salkind, C. T. (Ed.). (1961). *The contest problem book*. New York: Random House.

Salkind, C. T. (Ed.). (1966). *The Mathematical Association of America problem book II*. New York: Random House.

Salkind, C. T., & Earl, J. M. (Eds.). (1973). *The Mathematical Association of America problem book III*. New York: Random House.

Saul, M. E., Kessler, G. W., Krilov, S., & Zimmerman, L. (1986). *The New York City contest problem book*. Palo Alto, CA: Seymour.

Schneider, L. J. (2000). *The contest problem book VI: American high school mathematics examinations 1989–1994*. Washington, DC: Mathematical Association of America.

Shklarsky, D. O., Chentzov, N. N., & Yaglom, I. M. (1962). *The USSR olympiad problem book*. San Francisco: Freeman.

Sitomer, H. (1974). *The new mathlete problem book*. Nassau County, NY: Interscholastic Mathematics League.

Steinhaus, H. (1963). *One hundred problems in elementary mathematics*. New York: Pergamon Press.

Straszewicz, S. (1965). *Mathematical problems and puzzles from the Polish mathematical olympiads* (J. Smslika, Trans.). New York: Pergamon Press.

Trigg, C. W. (1967). *Mathematical quickies*. New York: McGraw-Hill.

Abraham, R. M. (1961). *Easy-to-do entertainments and diversions with coins, cards, string, paper and matches*. New York: Dover.

Ainley, S. (1977). *Mathematical puzzles*. London: Bell.

Alexanderson, G. L., Klosinski, L. F., & Larson, L. C. (1985). *The William Lowell Putnam mathematical competition: Problems and solutions: 1965–1984*.Washington, DC: Mathematical Association of America.

Allen, L. (1991). *Brainsharpeners*. London: Hodder & Stoughton, New English Library.

Andreescu, T., & Feng, Z. (2000). *Mathematical olympiads: Problems and solutions from around the world 1998–1999*. Washington, DC: Mathematical Association of America.

Andreescu, T., & Feng, Z. (2001). *USA and international mathematical olympiads 2000*. Washington, DC: Mathematical Association of America.

Andreescu, T., & Feng, Z. (2002a). *Mathematical olympiads: Problems and solutions from around the world 1999–2000*. Washington, DC: Mathematical Association of America.

Andreescu, T., & Feng, Z. (2002b). *USA and international mathematical olympiads 2001*. Washington, DC: Mathematical Association of America.

Andreescu, T., Feng, Z., & Lee Jr., G. (2003). *Mathematical olympiads: Problems and solutions from around the world 2000–2001*. Washington, DC: Mathematical Association of America.

ApSimon, H. (1984). *Mathematical byways*. New York: Oxford University Press.

ApSimon, H. (1990). *More mathematical byways in ayling, beeling and ceiling*. New York: Oxford University Press.

Aref, M. N., & Wernick, W. (1986). *Problems and solutions in Euclidean geometry*. New York: Dover.

Artino, R. A., Gaglione, A. M., & Shell, N. (1982). *The contest problem book IV: Annual high school examinations, 1973–1982*. Washington, DC: Mathematical Association of America.

Barbeau, E., Klamkin, M, & Moser, W. (Eds.). (1985). *1001 problems in high school mathematics*. Montreal: Canadian Mathematical Congress.

Barbeau, E., Klamkin, M., & Moser, W. (1995). *Five hundred mathematical challenges*. Washington, DC: Mathematical Association of America.

Barr, S. (1965). *A miscellany of puzzles*. New York: Crowell.

Barr, S. (1982). *Mathematical brain benders*. New York: Dover.

Barry, D. T., & Lux, J. R. (1984). *The Philips Academy prize examination in mathematics*. Palo Alto, CA: Seymour.

Bates, N. B., & Smith, S. M. (1980). *101 puzzle problems*. Concord, MA: Bates.

Berloquin, P. (1976a). *100 geometric games*. New York: Scribner's.

Berloquin, P. (1976b). *100 numerical games*. New York: Scribner's.

Berloquin, P. (1977). *100 games of logic*. New York: Scribner's.

Berloquin, P. (1985). *The garden of the sphinx*. New York: Scribner's.

Berzsenyi, G., & Maurer, S. B. (1997). *The contest problem book V*. Washington, DC: Mathematical Association of America.

Birtwistle, C. (1971). *Mathematical puzzles and perplexities*. London: Allen & Unwin.

Brandes, L. G. (1975). *The math wizard* (rev. ed.). Portland, ME: Walch.

Bridgman, G. (1981). *Lake Wobegon math problems* (rev. & enlarged ed.). Minneapolis, MN: Author.

Brousseau, A. (1972). *Saint Mary's College mathematics contest problems*. Palo Alto, CA: Creative.

Bryant, S. J., Graham, G. E., & Wiley, K. G. (1965). *Nonroutine problems in algebra, geometry, and trigonometry*. New York: McGraw-Hill.

Bryant, V., & Postill, R. (1983). *The* Sunday Times *book of brain teasers—Book 2*. Englewood Cliffs, NJ: Prentice-Hall.

Bryant, V., & Raymond, P. (1982). *The* Sunday Times *book of brain teasers*. New York: St. Martin's Press.

Burkill, J. C., & Kundy, H. M. (1961). *Mathematical scholarship problems*. London: Cambridge University Press.

Butts, T. (1973). *Problem solving in mathematics*. Glenview, IL: Scott, Foresman.

Canadian Mathematical Society. *Crux Mathematicorum: The problem solving journal*. Ottawa, ON, Canada: Author. Available at http://journals.cms.math.ca/CRUX/

Central Midwest Regional Educational Laboratory. (1975). *Elements of mathematics problem book*. St. Louis, MO: Author.

Charosh, M. (1965). *Mathematical challenges*. Washington, DC: National Council of Teachers of Mathematics.

Clarke, B. R. (1994). *Puzzles for pleasure*. New York: Cambridge University Press.

Clarke, B. R., Gooch, R, Newing, A., & Singmaster, D. (1993). *The* Daily Telegraph *book of brain twisters, No. 1*. London: Pan.

Conrad, S. R., & Flegler, D. (n994a). *Math contests grades 4, 5, and 6*. Tenafly, NJ: Math League Press.

Conrad, S. R., & Flegler, D. (1994b). *Math contests grades 7 and 8*. Tenafly, NJ: Math League Press.

Conrad, S. R., & Flegler, D. (1995). *Math contests for high school*. Tenafly, NJ: Math League Press.

Dorrie, H. (1965). *100 great problems of elementary mathematics*. New York: Dover.

Dowlen, M., Powers, S., & Florence, H. (1987). *College of Charleston mathematics contest book*. Palo Alto, CA: Seymour.

Dudney, H. E. (1958). *The Canterbury puzzles*. New York: Dover.

Dudney, H. E. (1970). *Amusements in mathematics*. New York: Dover.

Dunn, A. (1964). *Mathematical bafflers*. New York: McGraw-Hill.

Dunn, A. F. (1983). *Second book of mathematical bafflers*. New York: Dover.

Edwards, J. D., King, D. J., & O'Halloran, P. J. (1986). *All the best from the Australian mathematics competition*. Melbourne, Australia: Ruskin Press.

Emmet, E. R. (1976). *Mind tickling brain teasers*. Buchanan, NY: Emerson Books.

Emmet, E. R. (1977a). *A diversity of puzzles*. New York: Barnes & Noble.

Emmet, E. R. (1977b). *Puzzles for pleasure*. Buchanan, NY: Emerson Books.

Emmet, E. R. (1979). *The great detective puzzle book*. New York: Barnes & Noble.

Emmet, E. R. (1980). *The island of imperfection puzzle book*. New York: Barnes & Noble.

Emmet, E. R. (1984). *The Penguin book of brain teasers* (D. Hall & A. Summers, Comp.). New York: Viking.

Emmet, E. R. (1993). *Brain puzzler's delight*. New York: Sterling.

Engel, A. (1998). *Problem solving strategies*. New York: Springer-Verlag.

Filipiak, A. S. (1942). *Mathematical puzzles*. New York: Bell.

Fisher, L., & Kennedy, B. (1984). *Brother Alfred Brousseau problem solving and mathematics competition, introductory division*. Palo Alto, CA: Seymour.

Fisher, L., & Medigovich, W. (1984). *Brother Alfred Brousseau problem solving and mathematics competition, senior division*. Palo Alto, CA: Seymour.

Fleener, F. O. (1990). *Mathematics contests: A guide for involving students and schools*. Reston, VA: National Council of Teachers of Mathematics.

Friedland, A. J. (1970). *Puzzles in math and logic*. New York: Dover.

Frohlichstein, J. (1962). *Mathematical fun, games and puzzles*. New York: Dover.

Fujimura, K. (1978). *The Tokyo puzzles* (M. Gardner, Ed.). New York: Scribner's.

Gardner, M. (1959). *Arrow book of brain teasers*. New York: Scholastic.

Gardner, M. (1961). *The second* Scientific American *book of mathematical puzzles and diversions*. New York: Simon & Schuster.

Gardner, M. (1969). *Perplexing puzzles and tantalizing teasers*. New York: Simon & Schuster.

Gardner, M. (1983). *Martin Gardner's sixth book of mathematical games from* Scientific American. Chicago: University of Chicago Press.

Gardner, M. (1977). *More perplexing puzzles and tantalizing teasers*. New York: Pocket Books, Archway.

Gardner, M. (1978). *Aha! Unsight*. New York: Scientific American & Freeman.

Gardner, M. (1981). *Science fiction puzzle tales*. New York: Potter.

Gardner, M. (1982). *Aha! Gotcha*. New York: Freeman.

Gardner, M. (1983). *Wheels, life and other mathematical amusements*. New York: Freeman.

Gardner, M. (1985). *The magic numbers of Dr. Matrix*. Buffalo, NY: Prometheus.

Gardner, M. (1986a). *Entertaining mathematical puzzles*. New York: Dover.

Gardner, M. (1986b). *Knotted doughnuts and other mathematical entertainments*. New York: Freeman.

Gardner, M. (1986c). *Puzzles from other worlds*. New York: Random House, Vintage.

Gardner, M. (1987). *Riddles of the sphinx*. Washington, DC: Mathematical Association of America, New Mathematical Library.

Gardner, M. (1988a). *Hexaflexagons and other mathematical diversions*. Chicago: University of Chicago Press.

Gardner, M. (1988b). *Time travel and other mathematical bewilderments*. New York: Freeman.

Gardner, M. (1989a). *Mathematical carnival* (rev. ed.). Washington, DC: Mathematical Association of America.

Gardner, M. (1989b). *Penrose tiles to trapdoor ciphers*. New York: Freeman.

Gardner, M (1990). *Mathematical magic show* (rev. ed.). Washington, DC: Mathematical Association of America.

Gardner, M. (1991). *The unexpected hanging and other mathematical diversions* (rev. ed.). Chicago: University of Chicago Press.

Gardner, M. (1992a). *Fractal music, hypercards and more*. New York: Freeman.

Gardner, M. (1992b). *Mathematical circus* (rev. ed.). Washington, DC: Mathematical Association of America.

Gardner, M. (1994). *My best mathematical and logical puzzles*. New York: Dover.

Gardner, M. (1995). *Martin Gardner's new mathematical diversions from* Scientific American. Washington, DC: Mathematical Association of America.

Garvin, A. D. (1975). *Discovery problems for better students*. Portland, ME: Weston Walch.

Gleason, A. M., Greenwood, R. E., & Kelly, L. M. (1980). *The William Lowell Putnam mathematical competitions. Problems and solutions: 1938–1964*.Washington, DC: Mathematical Association of America.

Gould, P. (1992). *Senior challenge '85–'91*. Mathematical Education on Merseyside, University of Liverpool, Liverpool, UK.

Gould, P., & Porteous, I. (1984). *Senior challenge '80–'84*. Mathematical Education on Merseyside, University of Liverpool, Liverpool, UK.

Graham, L. A. (1959). *Ingenious mathematical problems and methods*. New York: Dover.

Graham, L. A. (1968). *The surprise attack in mathematical problems*. New York: Dover.

Greitzer, S. L. (1978). *International mathematical olympiads 1959–1977*. Washington, DC: Mathematical Association of America.

Haber, P. (1957). *Mathematical puzzles and pastimes*. Mount Vernon, NY: Peter Pauper.

Hadley, J., & Singmaster, D. (1992, March). Problems to sharpen the young: An annotated translation of Propositiones alcuini doctoris caroli magni imperatoris ad acuendos juvenes. *Mathematical Gazette, 76*(475), 102–126.

Hahn, L.-S. (2005). *New Mexico mathematics contest problem book*. Albuquerque: University of New Mexico Press.

Halmos, P. R. (1991). *Problems for mathematicians young and old* (Dolciani Mathematical Expositions No. 12). Washington, DC: Mathematical Association of America.

Higgins, A. M. (1971). *Geometry problems*. Portland, ME: Walch.

Hill, T. J. (1974). *Mathematical challenges 2—Plus six*.Washington, DC: National Council of Teachers of Mathematics.

Honsberger, R. (1978). *Mathematical morsels*.Washington, DC: Mathematical Association of America.

Honsberger, R. (1996). *From Erdös to Kiev: Problems of olympiad caliber*.Washington, DC: Mathematical Association of America.

Honsberger, R. (1997). *In Polya's footsteps: Miscellaneous problems and essays*. Washington, DC: Mathematical Association of America.

Holton, D. (1988–1991). *Problem solving series*. 1. *How to*; 2: *Combinatorics 1;* 3. *Graph theory*; 4. *Number theory;* 5. *Geometry 1;* 6. *Proof;* 7. *Geometry 2;* 8. *IMO problems 1;* 9. *Combinatorics 2;* 10. *Geometry 2;* 11. *Number theory 2;* 12. *Inequalities;*
13. *Combinatorics 3;* 14. *IMO problems 2;* 15. *Creating problems*. Leicester, UK: Mathematical Association.

Hunter, J. A. H. (1965). *Fun with figures*. New York: Dover.

Hunter, J. A. H. (1966). *More fun with figures*. New York: Dover.

Hunter, J. A. H. (1972). *Figures for fun* (2nd ed.). London: Dent Aldine.

Hunter, J. A. H. (1976). *Mathematical brain teasers*. New York: Dover.

Hunter, J. A. H. (1977). *Challenging mathematical teasers*. New York: Dover.

Hunter, J. A. H. (1983). *Entertaining mathematical teasers and how to solve them*. New York: Dover.

Kahan, S. (1978). *Have some sums to solve: The compleat alphametics book*. Farmingdale, NY: Baywood.

Kahan, S. (1994). *At last!! Encoded totals second addition: The long awaited sequel to “Have Some Sums to Solve.”* Farmingdale, NY: Baywood.

Kahan, S. (1996). *Take a look at a good book: The third collection of additive alphametics for the connoisseur*. Farmingdale, NY: Baywood.

Klamkin, M. S. (1986). *International mathematical olympiads, 1979–1985*. Washington, DC: Mathematical Association of America.

Konhauser, J. D. E., Velleman, D., & Wagon, S. (1996). *Which way did the bicycle go?*
Washington, DC: Mathematical Association of America.

Kordemsky, B. A. (1972). *The Moscow puzzles* (M. Gardner, Ed.). New York: Scribner's.

Krechmer, V. A. (1974). *A problem book in algebra* (V. *S*hiffer, Trans.). Moscow: Mir.

Krulik, S., & Rudnick, J. A. (1980). *Problem solving: A handbook for teachers*. Boston: Allyn & Bacon.

Krulik, S., & Rudnick, J. A. (1996). *The new sourcebook for teaching reasoning and problem solving in junior and senior high schools*. Boston: Allyn & Bacon.

Kuczma, M. E. (2003). *International mathematical olympiads 1986–1999*.Washington, DC: Mathematical Association of America.

Larson, L. C. (1983). *Problem solving through problems*. New York: Springer-Verlag.

Lenchner, G. (1983). *Creative problem solving in school mathematics*. Boston: Houghton Mifflin.

Lenchner, G. (1997). *Math olympiad contest problems for elementary and middle schools*. East Meadow, NY: Glenwood.

Luckács, C., & Tarján, E. (1968). *Mathematical games*. New York: Walker.

Moser, W., & Barbeau, E. (1976). *The Canadian mathematics olympiads 1969, 1975*. Montreal: Canadian Mathematical Congress.

Morris, I. (1969). *The riverside puzzles*. New York: Walker.

Morris, I. (1970). *The lonely monk and other puzzles*. Boston: Little, Brown.

Morris, I. (1972). *Foul play and other puzzles of all kinds*. New York: Random House, Vintage.

Morris, I. (1984). *Super-games*. London: Hutchinson.

Morris, I. (1991a). *Fiendishly difficult math puzzles*. New York: Sterling.

Morris, I. (1991b). *Fiendishly difficult visual perception puzzles*. New York: Sterling.

Moser, W. O. J., & Barbeau, E. J. (1978). *The first 10 Canadian mathematics olympiads (1969–1978)*. Montreal: Canadian Mathematical Society.

Mosteller, F. (1965). *Fifty challenging problems in probability*. New York: Dover.

Mott-Smith, G. (1954). *Mathematical puzzles for beginners and enthusiasts*. New York: Dover.

Newton, D. E. (1972). *One hundred quickies for math classes*. Portland, ME: Walch.

Phillips, H. (1932a). *The playtime omnibus*. London: Faber & Faber.

Phillips, H. (1932b). *The week-end problems book*. London: Nonesuch.

Phillips, H. (1934). *The sphinx problem book*. London: Faber.

Phillips, H. (1936). *Brush up your wits*. London: Dent.

Phillips, H. (1938). *Question time*. New York: Farrar & Rinehart.

Phillips, H. (1945a). *Ask me another*. London: Ptarmigan.

Phillips, H. (1945b). *Hubert Phillips's heptameron*. London: Eyre & Spottiswoode.

Phillips, H. (1958). *Something to think about*. London: Parrish.

Phillips, H. (1947). *Playtime*. London: Ptarmigan.

Phillips, H. (1950). *The Hubert Phillips annual 1951*. London: Hamish Hamilton.

Phillips, H. (1960). *Problems omnibus* (Vol. 1). London: Arco.

Phillips, H. (1961a). *My best puzzles in logic and reasoning*. New York: Dover.

Phillips, H. (1961b). *My best puzzles in mathematics*. New York: Dover.

Phillips, H. (1962). *Problems omnibus* (Vol. 2). London: Arco.

Phillips, H., Shovelton, S. T., & Marshal, G. S. (1961). *Caliban's problem book*. New York: Dover.

Polya, G., & Kilpatrick, J. (1974). *The Stanford mathematics book*. New York: Teachers College Press.

Posamentier, A. S. (1996). *Students! Get ready for the mathematics for SAT I: Problem-solving strategies and practical tests*. Thousand Oaks, CA: Corwin.

Posamentier, A. S. (2002). *Advanced Euclidean geometry: Excursions for secondary teachers and students*. Emeryville, CA: Key College Press.

Posamentier, A. S., & Krulik, S. (1996). *Teachers! Prepare your students for the mathematics for SAT I: Methods and problem-solving strategies*. Thousand Oaks, CA: Corwin.

Posamentier, A. S., & Krulik, S. (1998). *Problem-solving strategies for efficient and elegant solutions: A resource for the mathematics teacher*. Thousand Oaks, CA: Corwin.

Posamentier, A. S., & Salkind, C. T. (1996a). *Challenging problems in algebra* (rev. ed). New York: Dover.

Posamentier, A. S., & Salkind, C. T. (1996b). *Challenging problems in geometry* (rev. ed.). New York: Dover.

Posamentier, A. S., & Schulz, W. (1996). *The art of problem solving: A resource for the mathematics teacher*. Thousand Oaks, CA: Corwin.

Posamentier, A. S., & Wernick, W. (1988). *Advanced geometric constructions*. Palo Alto, CA: Seymour.

Ransom, W. R. (1955). *One hundred mathematical curiosities*. Portland, ME: J. Weston Walch.

Reis, C. M., & Ditor, S. Z. (Eds.). (1988). *The Canadian mathematics olympiads (1979–1985)*. Ottawa, ON, Canada: Canadian Mathematical Society.

Ruderman, H. D. (1983). NYSML-ARML *Contests 1973–1982*. Norman, OK: Mu Alpha Theta.

Salkind, C. T. (Ed.). (1961). *The contest problem book*. New York: Random House.

Salkind, C. T. (Ed.). (1966). *The Mathematical Association of America problem book II*. New York: Random House.

Salkind, C. T., & Earl, J. M. (1973). *The Mathematical Association of America problem book III*. New York: Random House.

Saul, M. E., Kessler, G. W., Krilov, S., & Zimmerman, L. (1986). *The New York City contest problem book*. Palo Alto, CA: Seymour.

Schneider, L. J. (2000). *The contest problem book 6: American high school mathematics examinations 1989–1994*. Washington, DC: Mathematical Association of America.

Shklarsky, D. O., Chentzov, N. N., & Yaglom, I. M. (1962). *The USSR olympiad problem book*. San Francisco: Freeman.

Shklarsky, D. O., Chentzov, N. N., & Yaglom, I. M. (1979). *Selected problems and theorems in elementary mathematics* (V. M. Volosov & I. G. Volsova, Trans.). Moscow: Mir.

Shortz, W. (1991). *Will Shortz's best brain busters*. New York: Random House, Times Books.

Shortz, W. (1993). *Brain twisters from the First World Puzzle Championships*. New York: Random House, Times Books.

Sierpinski, W. (1964). *A selection of problems in the theory of numbers*. London: Pergamon/Macmillan.

Sierpinski, W. (1970). *Two hundred fifty problems in elementary number theory*. New York: American Elsevier.

Sitomer, H. (1974). *The new mathlete problem book*. Nassau County, NY: Interscholastic Mathematics League.

Snape, C., & Scott, H. (1991). *How puzzling*. New York: Cambridge University Press.

Soifer, A. (1987). *Mathematics as problem solving*. Colorado Springs, CO: Center for Excellence in Mathematics Education.

Sole, T. (1988). *The ticket to heaven and other superior puzzles*. London: Penguin.

Steinhaus, H. (1963). *One hundred problems in elementary mathematics*. New York: Pergamon Press.

Straszewicz, S. (1965). *Mathematical problems and puzzles from the Polish mathematical olympiads* (J. Smslika, Trans.). New York: Pergamon Press.

Trigg, C. W. (1967). *Mathematical quickies*. New York: McGraw-Hill.

Ulam, S. M. (1960). *Problems in modern mathematics*. New York: Wiley.

Vakil, R. (1996). *A mathematical mosaic: Patterns and problem solving*. Burlington, ON, Canada: Kelly.

Vout, C., & Gray, G. (1993). *Challenging puzzles*. New York: Cambridge University Press.

Wall, H. S. (1963). *Creative mathematics*. Austin: University of Texas Press.

Wells, D. G. (1979). *Recreations in logic*. New York: Dover.

Williams, W. T, & Savage, G. H. (1940). *The Penguin problems book*. London: Penguin.

Williams, W. T, & Savage, G. H. (1944). *The second Penguin problems book*. London: Penguin.

Williams, W. T, & Savage, G. H. (1946). *The third Penguin problems book*. London: Penguin.

Yaglom, A. M., &. Yaglom, I. M. (1964). *Challenging mathematical problems with elementary solutions* (Vol. 1). San Francisco: Holden-Day.

Yaglom, A. M., &. Yaglom, I. M. (1967). *Challenging mathematical problems with elementary solutions* (Vol. 2). San Francisco: Holden-Day.

Ackoff, R. L. (1978). *The art of problem solving*. New York: Wiley.

Adams, J. L. (1974). *Conceptual blockbusting*. San Francisco: Freeman.

Adler, I. (1970). *Mathematics and mental growth*. London: Dobson.

Andre, T. (1986). Problem solving and education. In G. Phye and T. Andre (Eds.), *Cognitive classroom learning: Understanding, thinking, and problem solving* (pp. 169–204). Orlando, FL: Academic Press.

Arnold, W. R. (1971). Students can pose and solve original problems. *The Mathematics Teacher, 64*, 325.

Averbach, B., & Chein, O. (1980). *Mathematics: Problem solving through recreational mathematics*. San Francisco: Freeman.

Bransford, J. D., & Stein, B. S. (1984). *The ideal problem solver*. New York: Freeman.

Brown, S. I., & Walter, M. I. (1983). *The art of problem posing*. Hillsdale, NJ: Erlbaum.

Butts, T. (1985). In praise of trial and error. *Mathematics Teacher, 78*, 167.

Charles, R., & Lester, F. (1982). *Teaching problem solving: What, why, and how*. Palo Alto, CA: Seymour.

Chipman, S., Segal, J., & Glaser, R. (1985). *Thinking and learning skills. Vol. 2: Research and open questions*. Hillsdale, NJ: Erlbaum.

Cofman, J. (1990). *What to solve? Problems and suggestions for young mathematicians*. Oxford: Oxford University Press.

Cofman, J. (1995). *Numbers and shapes revisited: More problems for young mathematicians*. Oxford: Oxford University Press.

Costa, A. (1984, November). Mediating the metacognitive. *Educational Leadership*, 57–62.

Curcio, F. (Ed.). (1987). *Teaching and learning, a problem solving focus*. Reston, VA: National Council of Teachers of Mathematics.

Davis, R., Jockusch, E., & McKnight, C. (1978, Spring). Cognitive processes in learning algebra. *Journal of Children's Mathematical Behavior, 2*(1).

Derry, S. J., & Murphy, D. A. (1986, Spring). Designing systems that train learning ability: From theory to practice. *Review of Educational Research, 56*(1), 1–39.

Emmet, E. R. (1981). *Learning to think*. Verplanck, NY: Emerson Books.

Fisher, R. B. (1981). *Brain games*. London: Fontana.

Fixx, J. F. (1978). *Solve it!* New York: Doubleday.

Frederiksen, N. (1984, Fall). Implications of cognitive theory for instruction on problem solving. *Review of Educational Research, 54*(3), 363–407.

Gardner, M. (1978). *Aha! Insight*. New York: Scientific American & Freeman.

Gardner, M. (1982). *Aha! Gotcha*. San Francisco: Freeman.

Gifted students. (1983). *Mathematics Teacher*, 76.

Gordon, W. J. J. (1961). *Synectics—The development of creative capacity*. New York: Harper & Row.

Hadamard, J. (1954). *The psychology of invention in the mathematical field*. New York: Dover.

Heiman, M., Narode, R., Slomianko, J., & Lochhead, J. (1987). *Thinking skills: Mathematics, teaching*.Washington, DC: National Education Association.

Honsberger, R. (1970). *Ingenuity in mathematics*. Washington, DC: Mathematical Association of America, New Mathematical Library.

Honsberger, R. (1973). *Mathematical gems* (Vol. 1, Dolciani Mathematical Expositions No. 1). Washington, DC: Mathematical Association of America.

Honsberger, R. (1976). *Mathematical gems* (Vol. 2, Dolciani Mathematical Expositions No. 2). Washington, DC: Mathematical Association of America.

Honsberger, R. (1978). *Mathematical morsels* (Dolciani Mathematical Expositions No. 3). Washington, DC: Mathematical Association of America.

Honsberger, R. (1979). *Mathematical plums* (Dolciani Mathematical Expositions No. 4). Washington, DC: Mathematical Association of America.

Honsberger, R. (1985). *Mathematical gems 3* (Dolciani Mathematical Expositions No. 9). Washington, DC: Mathematical Association of America.

Honsberger, R. (1991). *More mathematical morsels* (Dolciani Mathematical Expositions No. 10). Washington, DC: Mathematical Association of America.

Hough, J. S. (Ed.). (1984). *Problem solving* (Newsletter, Vols. 1–5). Philadelphia: Franklin Institute Press.

Hughes, B. (1975). *Thinking through problems*. Palo Alto, CA: Creative.

Jensen, R. J. (1987). Stuck? Don't give up! Subgoal-generation strategies in problem solving.
*The Mathematics Teacher, 80*, 614.

Karmos, J., & Karmos, A. (1987). Strategies for active involvement in problem solving. In M. Heiman & J. Slomianko (Eds.), *Thinking skills instruction: Concepts and techniques*
(pp. 99–110). Washington, DC: National Education Association.

Kluwe, R. (1987). Executive decisions and regulation of problem solving behavior. In F. Weinert & R. Kluwe (Eds.), *Metacognition, motivation and understanding*. Hillsdale, NJ: Erlbaum.

Krantz, S. G. (1997). *Techniques of problems solving*. Providence, RI: American Mathematical Society.

Krulik, S. (Ed.). (1980). *Problem solving in school mathematics, 1980 yearbook*. Reston, VA: National Council of Teachers of Mathematics.

Krulik, S., & Rudnick, J. (1987). *Problem solving: A handbook for teachers* (2nd ed.). Boston: Allyn & Bacon.

Krulik, S., & Rudnick, J. (1989). *Problem solving: A handbook for senior high school teachers*. Boston: Allyn & Bacon.

Krulik, S., & Rudnick, J. (1993). *Reasoning and problem solving: A handbook for elementary school teachers*. Boston: Allyn & Bacon.

Krulik, S., & Rudnick, J. (1995). *The new sourcebook for teaching reasoning and problem solving in elementary schools*. Boston: Allyn & Bacon.

Krulik, S., & Rudnick, J. (1996). *The new sourcebook for teaching reasoning and problem solving in secondary schools*. Boston: Allyn & Bacon.

Mason, J. (1984). *Learning and doing mathematics*. Milton Keynes, England: Open University Press.

Mason, J. (with Burton, L., & Stacey, K.) (1985). *Thinking mathematically*. Reading, MA: Addison-Wesley.

Mayer, R. (1986). Mathematics. In R. Dillon & R. Sternberg (Eds.), *Cognition and instruction*. Orlando, FL: Academic Press.

McKim, R. H. (1980). *Thinking visually: A strategy manual for problem solving*. Palo Alto, CA: Seymour.

Moses, S. (1974). *The art of problem-solving*. London: Transworld.

Mottershead, L. (1978). *Sources of mathematical discovery*. Oxford, UK: Blackwell.

Mottershead, L. (1985). *Investigations in mathematics*. Oxford, UK: Blackwell.

Nickerson, R. (1981, October). Thoughts on teaching thinking. *Educational Leadership*, 21–24.

Nickerson, R., Perkins, D., & Smith, E. (1985). *The teaching of thinking*. Hillsdale, NJ: Erlbaum.

Noller, R. B., Heintz, R. E., & Blaeuer, D. A. (1978). *Creative problem solving in mathematics*. Buffalo, NY: D. O. K..

Polya, G. (1945). *How to solve it*. Princeton, NJ: Princeton University Press.

Polya, G. (1954a). *Introduction and analogy in mathematics*. Princeton, NJ: Princeton University Press.

Polya, G. (1954b). *Patterns of plausible inference*. Princeton, NJ: Princeton University Press.

Polya, G. (1981). *Mathematical discovery* (Vols. 1–2, combined ed. with foreword by P. Hilton, bibliography extended by G. Alexanderson, & index extended by J. Pedersen). New York: Wiley. (Original works published 1962, 1965)

Posamentier, A. S. (1996). *Teachers! Prepare your students for the mathematics for SAT I: Methods and problem-solving strategies*. Thousand Oaks, CA: Corwin.

Posamentier, A. S., & Krulik, S. (1998). *Problem solving strategies for efficient and elegant solutions: A resource for the mathematics teacher*. Thousand Oaks, CA: Corwin.

Posamentier, A. S., & Schulz, W. (1996). *The art of problem solving: A resource for the mathematics teacher*. Thousand Oaks, CA: Corwin.

Reeves, C. A. (1987). *Problem solving techniques helpful in mathematics and science*. Reston, VA: National Council of Teachers of Mathematics.

Schoenfeld, A. H. (1983). *Problem solving in the mathematics curriculum*. Washington, DC: Mathematical Association of America.

Schoenfeld, A. H. (1985). *Mathematical problem solving*. Orlando, FL: Academic Press.

Segal, J., Chipman, S., & Glaser, R. (Eds.). (1985). *Thinking and learning skills, Vol. 1: Relating instruction to research*. Hillsdale, NJ: Erlbaum.

Silver, E. A. (Ed.). (1985). *Teaching and learning mathematical problem solving*. Hillsdale, NJ: Erlbaum.

Simon, M. A. (1986, April). The teacher's role in increasing student understanding of mathematics. *Educational Leadership, 43*(7), 40–43.

Skemp, R. R. (1971). *The psychology of learning mathematics*. Baltimore, MD: Penguin Books.

Smullyan, R. (1978). *What is the name of this book?* Englewood Cliffs, NJ: Prentice-Hall.

Soifer, A. (1987). *Mathematics as problem solving*. Colorado Springs, CO: Center for Excellence in Mathematics Education.

Troutman, A., & Lichtenberg, B. P. (1974, November). Problem solving in the general mathematics classroom. *Mathematics Teacher, 67*(7), 590–597.

Walter, M. I., & Brown, S. I. (1977, January). Problem posing and problem solving.
*Mathematics Teacher, 70*(1), 4–13.

Whirl, R. J. (1973, October). Problem solving—solution or technique? *Mathematics Teacher, 66*(6), 551–553.

Winckelgren, W. A. (1974). *How to solve problems*. San Francisco: Freeman.

*The Understanding by Design Guide to Creating High-Quality Units**The Differentiated Classroom: Responding to the Needs of All Learners, 2nd Edition**Engaging Students with Poverty in Mind: Practical**The Core Six: Essential Strategies for Achieving Excellence with the Common Core**Better Learning Through Structured Teaching, 2nd edition*

Your comments are being added. Please wait...