1703 North Beauregard St. Alexandria, VA 22311-1714 Tel: 1-800-933-ASCD (2723) Fax: 703-575-5400
8:00 a.m. to 6:00 p.m. eastern time, Monday through Friday
Local to the D.C. area: 1-703-578-9600
Toll-free from U.S. and Canada: 1-800-933-ASCD (2723)
All other countries: (International Access Code) + 1-703-578-9600
by Alfred S. Posamentier, Daniel Jaye and Stephen Krulik
Table of Contents
Altshiller-Court, N. A. (1952). College geometry. New York: Barnes & Noble.
Barnett, I. A. (1972). Elements of number theory. Boston: Prindle, Weber, & Schmidt.
Bell, E. T. (1937). Men of mathematics. New York: Simon & Schuster.
Berggren, L., Borwein, J., & Borwein, P. (1997). Pi: A source book. New York: Springer.
Boston, C. (2002). ERIC Clearinghouse on Assessment and Evaluation, College Park, MD. (ED470206, 2002-10-00).
Bruckheimer, M., & Hirshkowitz, R. (1977). Mathematics projects in junior high school. Mathematics Teacher, 70, 573.
Brumbaugh, D. K., Ashe, D. E., Ashe, J. L., & Rock, D. (1997). Teaching secondary mathematics. Mahwah, NJ: Erlbaum.
Cherkas, B. (1993, February). Humanizing the multiple choice test with partial credit. Melbourne, FL: Research Council for Diagnostic/Prescriptive Mathematics.
Chrystal, G. (1964). Textbook of algebra. New York: Chelsea.
Courant, R., & Robbins, H. (1941). What is mathematics? New York: Oxford University Press.
Coxeter, H. S. M., & Greitzer, S. L. (1967). Geometry revisited. New York: Random House.
Davis, D. R. (1949). Modern college geometry. Reading, MA: Addison-Wesley.
Diggins, J. E. (1965). String, straight-edge, and shadow: The story of geometry. New York: Viking Press.
Dudley, U. (1987). A budget of trisections. New York: Springer.
Elgarten, G. H. (1976). A mathematics intramurals contest. Mathematics Teacher, 69, 477.
Farmer, D. W., & Sandford, T. B. (1996). Knots and surfaces: A guide to discovering mathematics. Providence, RI: American Mathematical Society.
Gorini, C. A. (Ed.). (2000). Geometry at work: A collection of papers showing applications of geometry. Washington, DC: Mathematical Association of America.
Hall, H. S., & Knight, S. R. (1960). Higher algebra. London: Macmillan.
Holmes, J. E. (1970, October). Enrichment or acceleration? Mathematics Teacher, 63(6), 471–473.
House, P. A. (1980). Interactions of science and mathematics. Columbus, OH: ERIC Clearing House for Science, Mathematics, and Environmental Education.
Ippolito, D. (1999, April). The mathematics of the spirograph. Mathematics Teacher, 92(4), 354–357.
James, R. C., & James, G. (Eds.). (1976). Mathematics dictionary (4th ed.). New York: Van Nostrand Reinhold.
Johnson, R. A. (1929). Modern geometry. Boston: Houghton Mifflin.
Jones, M. H. (1983, October). Mathcounts: A new junior high school mathematics competition. Mathematics Teacher, 76(7), 482–485.
Karush, W. (1962). The crescent dictionary of mathematics. New York: Macmillan.
Krulik, S., & Rudnick, J. (1998). Assessing reasoning and problem solving: A sourcebook for elementary school teachers. Boston, MA: Allyn & Bacon.
Krulik, S., Rudnick, J., & Milou, E. (2003). Teaching mathematics in middle school: A practical guide. Boston: Allyn & Bacon.
Leonard, W. A. (1977). No upper limit: The challenge of the teacher of secondary mathematics. Fresno, CA: Creative Teaching Association.
Lichtenberg, B. K. (1981). Some excellent sources of material for mathematics clubs. Mathematics Teacher, 74, 284.
Loomis, E. S. (1968). The Pythagorean proposition. Reston, VA: National Council of Teachers of Mathematics.
Loy, J. (1997). The Pythagorean theorem. Retrieved August 2, 2006, from http://www.jimloy.com/geometry/pythag.htm
Madachy, J. S. (1979). Madachy's mathematical recreations. New York: Dover Paperbacks.
Magic Squares. http://www.magic-squares.de/general/squares/squares.html
Martin, G. E. (1998). Geometric constructions. New York: Springer.
Mathematics League. (2006). The Math League [home page]. Retrieved August 2, 2006, from http://www.mathleague.com
Morgan, F. (2000). The math chat book. Washington, DC: Mathematical Association of America.
Morgan, F., Melnick, E. R., & Nicholson, R. (1997, December). The soap-bubble-geometry contest. Mathematics Teacher, 90(9), 746–750.
National Council of Teachers of Mathematics. (1980). An agenda for action: Recommendations for school mathematics of the 1980's. Reston, VA: Author.
National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: Author.
National Council of Teachers of Mathematics. (1991). Professional standards for teaching mathematics. Reston, VA: Author.
National Council of Teachers of Mathematics. (1995). Assessment standards for school mathematics. Reston, VA: Author.
National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author.
National Council of Teachers of Mathematics. (n.d.). Grants and awards. Retrieved August 2, 2006, from http://www.nctm.org/about/grants.htm
National Council of Teachers of Mathematics. (n.d.). NCTM Illuminations Project [home page]. Retrieved August 2, 2006, from http://illuminations.nctm.org/
National Science Foundation. (n.d.). The Presidential Awards for Excellence in Mathematics and Science Teaching [home page]. Retrieved August 2, 2006, from http://paemst.org/Program.cfm
Newman, J. R. (1956). The world of mathematics. New York: Simon & Schuster.
Olds, C. D. (1963). Continued fractions. New York: Random House.
Posamentier, A. S. (2000a). Making algebra come alive. Thousand Oaks, CA: Corwin.
Posamentier, A. S. (2000b). Making geometry come alive. Thousand Oaks, CA: Corwin.
Posamentier, A. S. (2000c). Making pre-algebra come alive. Thousand Oaks, CA: Corwin.
Posamentier, A. S. (2002). Advanced Euclidean geometry: Excursions for secondary students and teachers. Emeryville, CA: Key College Press.
Posamentier, A. S. (2003). Math wonders to inspire teachers and students. Alexandria, VA: Association for Supervision & Curriculum Development.
Posamentier, A. S., & Hauptman, H. A. (2006). 101 great ideas for introducing key concepts in mathematics (2nd ed.). Thousand Oaks, CA: Corwin.
Posamentier, A. S., & Jaye, D. (2006). What successful math teachers do, 6–12. Thousand Oaks, CA: Corwin.
Posamentier, A. S., & Lehmann, I. (2004). π: A biography of the world's most mysterious number. Amherst, NY: Prometheus Books.
Posamentier, A. S., & Lehmann, I. (2007). The fabulous Fibonacci numbers. Amherst, NY: Prometheus Books.
Posamentier, A. S., Smith, B. S., & Stepelman, J. (2006). Teaching secondary mathematics: Techniques and enrichment units (7th ed.). Upper Saddle River, NJ: Merrill/Prentice Hall.
Pythagoras Theorem. (n.d.). Retrieved August 2, 2006, from http://www.unisanet.unisa.edu.au/07305/pythag.htm
Sadovskii, L. E., & Sadovskii, A. L. (1996). Mathematics and sports (S. Makar-Limanov, Trans.). Providence, RI: American Mathematical Society.
Schaaf, W. L. (Ed.). (1978). A bibliography of recreational mathematics.Washington, DC: National Council of Teachers of Mathematics.
Smith, D. E., (Ed.). (1929). Source book in mathematics. New York: McGraw-Hill.
Stiggins, R. (2002). Assessment crisis: The absence of assessment FOR learning. Phi Delta Kappan 88(10), 758–765.
Third International Mathematics and Science Study (TIMSS). Available at http://nces.ed.gov./timss/
Weisstein, E. W. (1999). Franklin Magic Square. From MathWorld—A Wolfram Web Resource. Retrieved August 2, 2006, from http://mathworld.wolfram.com/FranklinMagicSquare.html
Wright, F. (1965). Motivating students with projects and teaching aids. Mathematics Teacher, 58, 47.
Ball, W. W. R. (1960). A short account of the history of mathematics. New York: Dover.
Bell, E. T. (1979). Mathematics, queen and servant of science. Washington, DC: Mathematical Association of America.
Boyer, C. B. (1968). A history of mathematics. New York: Wiley.
Bunt, L. N. H., Jones, P. S., & Bedient, J. D. (1976). The historical roots of elementary mathematics. Englewood Cliffs, NJ: Prentice Hall.
Cajori, F. (1928). A history of mathematic notations. LaSalle, IL: Open Court.
Campbell, D. M., & Higgins, J. C. (Eds.). (1984). Mathematics: people, problems, results. Belmont, CA: Wadsworth.
Eves, H. (1976). An introduction to the history of mathematics (4th ed.). New York: Holt, Rinehart, & Winston.
Focus Issue on History. (2000, November). Mathematics Teacher, 93(8).
Gray, S. B., & Sandifer, C. E. (2001, February). The sumario compendioso: The new world's first mathematics book. Mathematics Teacher, 94(2), 98–103.
Hamburger, P., & Pippert, R. E. (2000, April). Venn said it couldn't be done. Mathematics Magazine, 73(2), 105–110.
Heath, T. L. (1963). Greek mathematics. New York: Dover.
Kaplan, R. (1999). The nothing that is: A natural history of zero. New York: Oxford University Press.
Kelley, L. (2000, January). A mathematical history tour. Mathematics Teacher, 93(1), 14–17.
Maor, E. (1994). The story of a number. Princeton, NJ: Princeton University Press.
Nahin, P. J. (1998). An imaginary tale: The story of √-1. Princeton, NJ: Princeton University Press.
Norwood, R. (1999, February). A star to guide us. Mathematics Teacher, 92(2), 100–101.
Posamentier, A. S., & Gordon, N. (1984, January). An astounding revelation on the history of π. Mathematics Teacher, 77(1), 52.
Posamentier, A. S., Smith, B. S., & Stepelman, J. (2006). Teaching secondary school mathematics: Techniques and enrichment units (7th ed.).Columbus, OH: Merrill/Prentice Hall.
Resnikoff, H. L., & Wells Jr., R. O. (1984). Mathematics in civilization. New York: Dover.
Seife, C. (2000). Zero: The biography of a dangerous idea. New York: Viking Penguin.
Smith, D. E. (1929). A source book in mathematics. New York: McGraw-Hill.
Smith, D. E. (1953). History of mathematics. New York: Dover.
van der Waerden, B. L. (1963). Science awakening. New York: Wiley.
Wiggins, G., & McTighe, J. (1998). Understanding by design. Alexandria, VA: Association for Supervision and Curriculum Development.
Ball, W. W. R., & Coxeter, H. S. M. (1960). Mathematical recreations and essays. New York: Macmillan.
Barbeau, E. J. (2000). Mathematical fallacies, flaws, and flimflam. Washington, DC: Mathematical Association of America.
Bay, J. M., Reys, R. E., Simms, K., & Taylor, P. M. (2000, March). Bingo games: Turning student intuitions into investigations in probability and number sense. Mathematics Teacher, 93(3), 200–206.
Beasley, J. D. (1976). The mathematics of games. New York: Oxford University Press.
Benson, W., & Jacoby, O. (1976). New recreations with magic squares. New York: Dover.
Caldwell, J. H. (1966). Topics in recreational mathematics. London: Cambridge University Press.
Cipra, B. (1989). Misteaks . . . and how to find them before the teacher does. San Diego, CA: Academic Press.
Cundy, H. M., & Rollett, A. P. (1961). Mathematical models. New York: Oxford University Press.
De Pillis, J. (2002). 777 mathematical conversation starters. Washington, DC: Mathematical Association of America.
Gardner, M. (1995). New mathematical diversions. Washington, DC: Mathematical Association of America.
Honsberger, R. (1978). Mathematical morsels. Washington, DC: Mathematics Association of America.
Kahan, S. (1996). Take a look at a good book: The third collection of additive alphametics for the connoisseur. Amityville, NY: Baywood.
Kraitchik, M. (1942). Mathematical recreations. New York: Dover.
Madachy, J. (1966). Mathematics on vacation. New York: Scribner.
Nelsen, R. B. (2000). Proofs without words 2: More exercises in visual thinking. Washington, DC: Mathematical Association of America.
Northrop, E. (1944). Riddles in mathematics. Princeton, NJ: Van Nostrand.
Ogilvy, C. S. (1956). Through the mathescope. New York: Oxford University Press.
Pickover, C. A. (2001). Wonders of numbers. New York: Oxford University Press.
Posamentier, A. S. (1988). Advanced geometric constructions. White Plains, NY: Seymour.
Posamentier, A. S. (2002). Advanced Euclidean geometry: Excursions for secondary teachers and students. Emeryville, CA: Key College Press.
Posamentier, A. S. (2003). Math wonders to inspire teachers and students. Alexandria, VA: Association for Supervision and Curriculum Development.
Schuh, F. (1968). The master book of mathematical recreations. New York: Dover.
Stevenson, F. W. (1992). Exploratory problems in mathematics. Reston, VA: National Council of Teachers of Mathematics.
Vanderlind, P., Guy, R., & Larson, L. (2002). The inquisitive problem solver. Washington, DC: Mathematical Association of America.
Carnahan, W. H. (Ed.). (1958). Mathematics clubs in high schools. Washington, DC: National Council of Teachers of Mathematics.
Devlin, K. (1994). All the math that's fit to print. (1994). Washington, DC: Mathematical Association of America.
Gruver, H. L. (1968). School mathematics contests: A report. Washington, DC: National Council of Teachers of Mathematics.
Hess, A. L. (1977). Mathematics projects handbook. Washington, DC: National Council of Teachers of Mathematics.
Mu Alpha Theta. (1970). Handbook for sponsors. Norman: University of Oklahoma.
Paulos, J. A. (1995). A mathematician reads the newspaper. New York: Basic Books.
Ransom, W. R. (1961). Thirty projects for mathematical clubs and exhibitions. Portland, ME: Walch.
Schumer, P. D. (2004). Mathematical journeys. Hoboken, NJ: Wiley.
Teppo, A. R., & Hodgson, T. (2001, February). Dinosaurs, dinosaur eggs, and probability. Mathematics Teacher, 94(2), 86–92.
Andreescu, T., & Feng, Z. (2000). Mathematical olympiads 1998–1999.Washington, DC: Mathematical Association of America.
Artino, R. A., Gaglione, A. M., & Shell, N. (1982). The contest problem book 4: Annual high school examinations, 1973–1982. Washington, DC: Mathematical Association of America.
Berzsenyi, G., & Mauer, S. B. (1997). The contest problem book 5: American high school mathematics examinations and American invitational mathematics examinations, 1983–1988. Washington, DC: Mathematical Association of America.
Conference Board of Mathematical Sciences. (1966). The role of axiomatics and problem solving in mathematics. Boston: Ginn.
Gardiner, T. (1996). Mathematical challenge. Cambridge: Cambridge University Press.
Gardiner, T. (1997). More mathematical challenges. Cambridge: Cambridge University Press.
Hayes, J. R. (1989). The complete problem solver (2nd ed.). Hillsdale, NJ: Erlbaum.
Holton, D. (1993). Let's solve some math problems. Waterloo, ON, Canada: Waterloo Mathematics Foundation, University of Waterloo.
Honsberger, R. (1996). From Erdös to Kiev, problems of olympiad caliber. Washington, DC: Mathematical Association of America.
Hudgins, B. B. (1966). Problem solving in the classroom. New York: Macmillan.
Krantz, S. G. (1997). Techniques of problem solving. Providence, RI: American Mathematical Society.
Krulik, S., & Rudnick, J. A. (1980). Problem solving: A handbook for teachers. Boston: Allyn & Bacon.
Polya, G. (1945). How to solve it. Princeton, NJ: Princeton University Press.
Polya, G. (1954). Mathematics and plausible reasoning. Princeton, NJ: Princeton University Press.
Polya, G. (1962). Mathematical discovery. New York: Wiley.
Posamentier, A. S. (1996). Students! Get ready for the mathematics for SAT I: Problem-solving strategies and practical tests. Thousand Oaks, CA: Corwin.
Posamentier, A. S., & Krulik, S. (1996). Teachers! Prepare your students for the mathematics for SAT I: Methods and problem-solving strategies. Thousand Oaks, CA: Corwin.
Posamentier, A. S., & Krulik, S. (1998). Problem-solving strategies for efficient and elegant solutions: A resource for the mathematics teacher. Thousand Oaks, CA: Corwin.
Posamentier, A. S., & Schulz, W. (1996). The art of problem solving: A resource for the mathematics teacher. Thousand Oaks, CA: Corwin.
Schneider, L. J. (2000). The contest problem book 6: American high school mathematics examinations 1989–1994. Washington, DC: Mathematical Association of America.
Whimbey, A., & Lochhead, J. (1980). Problem solving and comprehension: A short course in analytical reasoning (2nd ed.). Philadelphia: Franklin Institute Press.
Wickelgren, W. A. (1974). How to solve problems. San Francisco: Freeman.
Zeitz, P. (1999). The art and craft of problem solving. New York: Wiley.
Andreescu, T., & Feng, Z. (2000). Mathematical olympiads: Problems and solutions from around the world, 1998–1999. Washington, DC: Mathematical Association of America.
Andreescu, T., & Feng, Z. (2001). USA and international mathematical olympiads 2000. Washington, DC: Mathematical Association of America.
Andreescu, T., & Feng, Z. (2002a). Mathematical olympiads: Problems and solutions from around the world 1999–2000. Washington, DC: Mathematical Association of America.
Andreescu, T., & Feng, Z. (2002b). USA and international mathematical olympiads 2001. Washington, DC: Mathematical Association of America.
Andreescu, T., & Feng, Z. (2003). Mathematical olympiads: Problems and solutions from around the world 2000–2001. Washington, DC: Mathematical Association of America.
Aref, M. N., & Wernick, W. (1968). Problems and solutions in Euclidean geometry. New York: Dover.
Barbeau, E., Klamkin, M., & Moser, W. (1975). Five hundred mathematical challenges. Washington, DC: Mathematical Association of America.
Barbeau, E., Klamkin, M., & Moser, W. (1978). 1001 problems in high school mathematics. Montreal, QC, Canada: Canadian Mathematics Congress, 1978.
Barry, D. T., & Lux, J. R. (1984). The Philips Academy prize examinations in mathematics. Palo Alto, CA: Seymour.
Brousseau, A. (Ed.). (1972). Mathematics contest problems. Palo Alto, CA: Creative Publications.
Bryant, S. J., Graham, G. E., & Wiley, K. G. (1965). Nonroutine problems in algebra, geometry, and trigonometry. New York: McGraw-Hill.
Butts, T. (1973). Problem solving in mathematics. Glenview, IL: Scott, Foresman.
Charosh, M. (Ed.). (1965). Mathematical challenges. Washington, DC: National Council of Teachers of Mathematics.
Dowlen, M., Powers, S., & Florence, H. (1987). College of Charleston mathematics contest book. Palo Alto, CA: Seymour.
Dunn, A. (Ed.). (1964). Mathematical bafflers. New York: McGraw-Hill.
Dunn, A. (Ed.). (1983). Second book of mathematical bafflers. New York: Dover.
Edwards, J. D., King, D. J., & O'Halloran, P. J. (1986). All the best from the Australian mathematics competition. Melbourne, Australia: Ruskin Press.
Engel, A. (1998). Problem-solving strategies. New York: Springer.
Fisher, L., & Kennedy, B. (1984). Brother Alfred Brousseau problem-solving and mathematics competition: Introductory division. Palo Alto, CA: Seymour.
Fisher, L., & Medigovich, W. (1984). Brother Alfred Brousseau problem-solving and mathematics competition. Palo Alto, CA: Seymour.
Gardiner, A. (1997). The mathematical olympiad handbook: An introduction to problem solving. New York: Oxford University Press.
Gillman, R. (Ed.) (2003). A friendly mathematics competition: 35 years of teamwork in Indiana. Washington, DC: Mathematical Association of America.
Greitzer, S. L. (1978). International mathematical olympiads. Washington, DC: Mathematical Association of America.
Hajós, G., Neukomm, G., & Surányi, J. (1963). Hungarian problem book: Based on the Eötvös competitions, 1894–1928 (E. Rapaport, Trans.). New York: Random House.
Hajós, G., Neukomm, G., & Surányi, J. (2001). Hungarian problem book 3: Based on the Eötvös Competition, 1929–1943 (A. Lui, Ed., Trans.). Washington, DC: Mathematical Association of America.
Hill, T. J. (Ed.). (1974). Mathematical challenges 2: Plus six. Washington, DC: National Council of Teachers of Mathematics.
Honsberger, R. (1997). In Polya's footsteps: Miscellaneous problems and essays. Washington, DC: Mathematical Association of America.
Polya, G., & Kilpatrick, J. (1974). The Stanford mathematics book. New York: Teachers College Press.
Posamentier, A. S., & Salkind, C. T. (1996). Challenging problems in algebra. New York: Dover.
Posamentier, A. S., & Salkind, C. T. (1996). Challenging problems in geometry. New York: Dover.
Salkind, C. T. (Ed.). (1961). The contest problem book. New York: Random House.
Salkind, C. T. (Ed.). (1966). The Mathematical Association of America problem book II. New York: Random House.
Salkind, C. T., & Earl, J. M. (Eds.). (1973). The Mathematical Association of America problem book III. New York: Random House.
Saul, M. E., Kessler, G. W., Krilov, S., & Zimmerman, L. (1986). The New York City contest problem book. Palo Alto, CA: Seymour.
Schneider, L. J. (2000). The contest problem book VI: American high school mathematics examinations 1989–1994. Washington, DC: Mathematical Association of America.
Shklarsky, D. O., Chentzov, N. N., & Yaglom, I. M. (1962). The USSR olympiad problem book. San Francisco: Freeman.
Sitomer, H. (1974). The new mathlete problem book. Nassau County, NY: Interscholastic Mathematics League.
Steinhaus, H. (1963). One hundred problems in elementary mathematics. New York: Pergamon Press.
Straszewicz, S. (1965). Mathematical problems and puzzles from the Polish mathematical olympiads (J. Smslika, Trans.). New York: Pergamon Press.
Trigg, C. W. (1967). Mathematical quickies. New York: McGraw-Hill.
Abraham, R. M. (1961). Easy-to-do entertainments and diversions with coins, cards, string, paper and matches. New York: Dover.
Ainley, S. (1977). Mathematical puzzles. London: Bell.
Alexanderson, G. L., Klosinski, L. F., & Larson, L. C. (1985). The William Lowell Putnam mathematical competition: Problems and solutions: 1965–1984.Washington, DC: Mathematical Association of America.
Allen, L. (1991). Brainsharpeners. London: Hodder & Stoughton, New English Library.
Andreescu, T., & Feng, Z. (2000). Mathematical olympiads: Problems and solutions from around the world 1998–1999. Washington, DC: Mathematical Association of America.
Andreescu, T., Feng, Z., & Lee Jr., G. (2003). Mathematical olympiads: Problems and solutions from around the world 2000–2001. Washington, DC: Mathematical Association of America.
ApSimon, H. (1984). Mathematical byways. New York: Oxford University Press.
ApSimon, H. (1990). More mathematical byways in ayling, beeling and ceiling. New York: Oxford University Press.
Aref, M. N., & Wernick, W. (1986). Problems and solutions in Euclidean geometry. New York: Dover.
Artino, R. A., Gaglione, A. M., & Shell, N. (1982). The contest problem book IV: Annual high school examinations, 1973–1982. Washington, DC: Mathematical Association of America.
Barbeau, E., Klamkin, M, & Moser, W. (Eds.). (1985). 1001 problems in high school mathematics. Montreal: Canadian Mathematical Congress.
Barbeau, E., Klamkin, M., & Moser, W. (1995). Five hundred mathematical challenges. Washington, DC: Mathematical Association of America.
Barr, S. (1965). A miscellany of puzzles. New York: Crowell.
Barr, S. (1982). Mathematical brain benders. New York: Dover.
Barry, D. T., & Lux, J. R. (1984). The Philips Academy prize examination in mathematics. Palo Alto, CA: Seymour.
Bates, N. B., & Smith, S. M. (1980). 101 puzzle problems. Concord, MA: Bates.
Berloquin, P. (1976a). 100 geometric games. New York: Scribner's.
Berloquin, P. (1976b). 100 numerical games. New York: Scribner's.
Berloquin, P. (1977). 100 games of logic. New York: Scribner's.
Berloquin, P. (1985). The garden of the sphinx. New York: Scribner's.
Berzsenyi, G., & Maurer, S. B. (1997). The contest problem book V. Washington, DC: Mathematical Association of America.
Birtwistle, C. (1971). Mathematical puzzles and perplexities. London: Allen & Unwin.
Brandes, L. G. (1975). The math wizard (rev. ed.). Portland, ME: Walch.
Bridgman, G. (1981). Lake Wobegon math problems (rev. & enlarged ed.). Minneapolis, MN: Author.
Brousseau, A. (1972). Saint Mary's College mathematics contest problems. Palo Alto, CA: Creative.
Bryant, V., & Postill, R. (1983). The Sunday Times book of brain teasers—Book 2. Englewood Cliffs, NJ: Prentice-Hall.
Bryant, V., & Raymond, P. (1982). The Sunday Times book of brain teasers. New York: St. Martin's Press.
Burkill, J. C., & Kundy, H. M. (1961). Mathematical scholarship problems. London: Cambridge University Press.
Canadian Mathematical Society. Crux Mathematicorum: The problem solving journal. Ottawa, ON, Canada: Author. Available at http://journals.cms.math.ca/CRUX/
Central Midwest Regional Educational Laboratory. (1975). Elements of mathematics problem book. St. Louis, MO: Author.
Charosh, M. (1965). Mathematical challenges. Washington, DC: National Council of Teachers of Mathematics.
Clarke, B. R. (1994). Puzzles for pleasure. New York: Cambridge University Press.
Clarke, B. R., Gooch, R, Newing, A., & Singmaster, D. (1993). The Daily Telegraph book of brain twisters, No. 1. London: Pan.
Conrad, S. R., & Flegler, D. (n994a). Math contests grades 4, 5, and 6. Tenafly, NJ: Math League Press.
Conrad, S. R., & Flegler, D. (1994b). Math contests grades 7 and 8. Tenafly, NJ: Math League Press.
Conrad, S. R., & Flegler, D. (1995). Math contests for high school. Tenafly, NJ: Math League Press.
Dorrie, H. (1965). 100 great problems of elementary mathematics. New York: Dover.
Dudney, H. E. (1958). The Canterbury puzzles. New York: Dover.
Dudney, H. E. (1970). Amusements in mathematics. New York: Dover.
Dunn, A. (1964). Mathematical bafflers. New York: McGraw-Hill.
Dunn, A. F. (1983). Second book of mathematical bafflers. New York: Dover.
Emmet, E. R. (1976). Mind tickling brain teasers. Buchanan, NY: Emerson Books.
Emmet, E. R. (1977a). A diversity of puzzles. New York: Barnes & Noble.
Emmet, E. R. (1977b). Puzzles for pleasure. Buchanan, NY: Emerson Books.
Emmet, E. R. (1979). The great detective puzzle book. New York: Barnes & Noble.
Emmet, E. R. (1980). The island of imperfection puzzle book. New York: Barnes & Noble.
Emmet, E. R. (1984). The Penguin book of brain teasers (D. Hall & A. Summers, Comp.). New York: Viking.
Emmet, E. R. (1993). Brain puzzler's delight. New York: Sterling.
Engel, A. (1998). Problem solving strategies. New York: Springer-Verlag.
Filipiak, A. S. (1942). Mathematical puzzles. New York: Bell.
Fisher, L., & Kennedy, B. (1984). Brother Alfred Brousseau problem solving and mathematics competition, introductory division. Palo Alto, CA: Seymour.
Fisher, L., & Medigovich, W. (1984). Brother Alfred Brousseau problem solving and mathematics competition, senior division. Palo Alto, CA: Seymour.
Fleener, F. O. (1990). Mathematics contests: A guide for involving students and schools. Reston, VA: National Council of Teachers of Mathematics.
Friedland, A. J. (1970). Puzzles in math and logic. New York: Dover.
Frohlichstein, J. (1962). Mathematical fun, games and puzzles. New York: Dover.
Fujimura, K. (1978). The Tokyo puzzles (M. Gardner, Ed.). New York: Scribner's.
Gardner, M. (1959). Arrow book of brain teasers. New York: Scholastic.
Gardner, M. (1961). The second Scientific American book of mathematical puzzles and diversions. New York: Simon & Schuster.
Gardner, M. (1969). Perplexing puzzles and tantalizing teasers. New York: Simon & Schuster.
Gardner, M. (1983). Martin Gardner's sixth book of mathematical games from Scientific American. Chicago: University of Chicago Press.
Gardner, M. (1977). More perplexing puzzles and tantalizing teasers. New York: Pocket Books, Archway.
Gardner, M. (1978). Aha! Unsight. New York: Scientific American & Freeman.
Gardner, M. (1981). Science fiction puzzle tales. New York: Potter.
Gardner, M. (1982). Aha! Gotcha. New York: Freeman.
Gardner, M. (1983). Wheels, life and other mathematical amusements. New York: Freeman.
Gardner, M. (1985). The magic numbers of Dr. Matrix. Buffalo, NY: Prometheus.
Gardner, M. (1986a). Entertaining mathematical puzzles. New York: Dover.
Gardner, M. (1986b). Knotted doughnuts and other mathematical entertainments. New York: Freeman.
Gardner, M. (1986c). Puzzles from other worlds. New York: Random House, Vintage.
Gardner, M. (1987). Riddles of the sphinx. Washington, DC: Mathematical Association of America, New Mathematical Library.
Gardner, M. (1988a). Hexaflexagons and other mathematical diversions. Chicago: University of Chicago Press.
Gardner, M. (1988b). Time travel and other mathematical bewilderments. New York: Freeman.
Gardner, M. (1989a). Mathematical carnival (rev. ed.). Washington, DC: Mathematical Association of America.
Gardner, M. (1989b). Penrose tiles to trapdoor ciphers. New York: Freeman.
Gardner, M (1990). Mathematical magic show (rev. ed.). Washington, DC: Mathematical Association of America.
Gardner, M. (1991). The unexpected hanging and other mathematical diversions (rev. ed.). Chicago: University of Chicago Press.
Gardner, M. (1992a). Fractal music, hypercards and more. New York: Freeman.
Gardner, M. (1992b). Mathematical circus (rev. ed.). Washington, DC: Mathematical Association of America.
Gardner, M. (1994). My best mathematical and logical puzzles. New York: Dover.
Gardner, M. (1995). Martin Gardner's new mathematical diversions from Scientific American. Washington, DC: Mathematical Association of America.
Garvin, A. D. (1975). Discovery problems for better students. Portland, ME: Weston Walch.
Gleason, A. M., Greenwood, R. E., & Kelly, L. M. (1980). The William Lowell Putnam mathematical competitions. Problems and solutions: 1938–1964.Washington, DC: Mathematical Association of America.
Gould, P. (1992). Senior challenge '85–'91. Mathematical Education on Merseyside, University of Liverpool, Liverpool, UK.
Gould, P., & Porteous, I. (1984). Senior challenge '80–'84. Mathematical Education on Merseyside, University of Liverpool, Liverpool, UK.
Graham, L. A. (1959). Ingenious mathematical problems and methods. New York: Dover.
Graham, L. A. (1968). The surprise attack in mathematical problems. New York: Dover.
Greitzer, S. L. (1978). International mathematical olympiads 1959–1977. Washington, DC: Mathematical Association of America.
Haber, P. (1957). Mathematical puzzles and pastimes. Mount Vernon, NY: Peter Pauper.
Hadley, J., & Singmaster, D. (1992, March). Problems to sharpen the young: An annotated translation of Propositiones alcuini doctoris caroli magni imperatoris ad acuendos juvenes. Mathematical Gazette, 76(475), 102–126.
Hahn, L.-S. (2005). New Mexico mathematics contest problem book. Albuquerque: University of New Mexico Press.
Halmos, P. R. (1991). Problems for mathematicians young and old (Dolciani Mathematical Expositions No. 12). Washington, DC: Mathematical Association of America.
Higgins, A. M. (1971). Geometry problems. Portland, ME: Walch.
Hill, T. J. (1974). Mathematical challenges 2—Plus six.Washington, DC: National Council of Teachers of Mathematics.
Honsberger, R. (1978). Mathematical morsels.Washington, DC: Mathematical Association of America.
Honsberger, R. (1996). From Erdös to Kiev: Problems of olympiad caliber.Washington, DC: Mathematical Association of America.
Holton, D. (1988–1991). Problem solving series. 1. How to; 2: Combinatorics 1; 3. Graph theory; 4. Number theory; 5. Geometry 1; 6. Proof; 7. Geometry 2; 8. IMO problems 1; 9. Combinatorics 2; 10. Geometry 2; 11. Number theory 2; 12. Inequalities; 13. Combinatorics 3; 14. IMO problems 2; 15. Creating problems. Leicester, UK: Mathematical Association.
Hunter, J. A. H. (1965). Fun with figures. New York: Dover.
Hunter, J. A. H. (1966). More fun with figures. New York: Dover.
Hunter, J. A. H. (1972). Figures for fun (2nd ed.). London: Dent Aldine.
Hunter, J. A. H. (1976). Mathematical brain teasers. New York: Dover.
Hunter, J. A. H. (1977). Challenging mathematical teasers. New York: Dover.
Hunter, J. A. H. (1983). Entertaining mathematical teasers and how to solve them. New York: Dover.
Kahan, S. (1978). Have some sums to solve: The compleat alphametics book. Farmingdale, NY: Baywood.
Kahan, S. (1994). At last!! Encoded totals second addition: The long awaited sequel to “Have Some Sums to Solve.” Farmingdale, NY: Baywood.
Kahan, S. (1996). Take a look at a good book: The third collection of additive alphametics for the connoisseur. Farmingdale, NY: Baywood.
Klamkin, M. S. (1986). International mathematical olympiads, 1979–1985. Washington, DC: Mathematical Association of America.
Konhauser, J. D. E., Velleman, D., & Wagon, S. (1996). Which way did the bicycle go? Washington, DC: Mathematical Association of America.
Kordemsky, B. A. (1972). The Moscow puzzles (M. Gardner, Ed.). New York: Scribner's.
Krechmer, V. A. (1974). A problem book in algebra (V. Shiffer, Trans.). Moscow: Mir.
Krulik, S., & Rudnick, J. A. (1996). The new sourcebook for teaching reasoning and problem solving in junior and senior high schools. Boston: Allyn & Bacon.
Kuczma, M. E. (2003). International mathematical olympiads 1986–1999.Washington, DC: Mathematical Association of America.
Larson, L. C. (1983). Problem solving through problems. New York: Springer-Verlag.
Lenchner, G. (1983). Creative problem solving in school mathematics. Boston: Houghton Mifflin.
Lenchner, G. (1997). Math olympiad contest problems for elementary and middle schools. East Meadow, NY: Glenwood.
Luckács, C., & Tarján, E. (1968). Mathematical games. New York: Walker.
Moser, W., & Barbeau, E. (1976). The Canadian mathematics olympiads 1969, 1975. Montreal: Canadian Mathematical Congress.
Morris, I. (1969). The riverside puzzles. New York: Walker.
Morris, I. (1970). The lonely monk and other puzzles. Boston: Little, Brown.
Morris, I. (1972). Foul play and other puzzles of all kinds. New York: Random House, Vintage.
Morris, I. (1984). Super-games. London: Hutchinson.
Morris, I. (1991a). Fiendishly difficult math puzzles. New York: Sterling.
Morris, I. (1991b). Fiendishly difficult visual perception puzzles. New York: Sterling.
Moser, W. O. J., & Barbeau, E. J. (1978). The first 10 Canadian mathematics olympiads (1969–1978). Montreal: Canadian Mathematical Society.
Mosteller, F. (1965). Fifty challenging problems in probability. New York: Dover.
Mott-Smith, G. (1954). Mathematical puzzles for beginners and enthusiasts. New York: Dover.
Newton, D. E. (1972). One hundred quickies for math classes. Portland, ME: Walch.
Phillips, H. (1932a). The playtime omnibus. London: Faber & Faber.
Phillips, H. (1932b). The week-end problems book. London: Nonesuch.
Phillips, H. (1934). The sphinx problem book. London: Faber.
Phillips, H. (1936). Brush up your wits. London: Dent.
Phillips, H. (1938). Question time. New York: Farrar & Rinehart.
Phillips, H. (1945a). Ask me another. London: Ptarmigan.
Phillips, H. (1945b). Hubert Phillips's heptameron. London: Eyre & Spottiswoode.
Phillips, H. (1958). Something to think about. London: Parrish.
Phillips, H. (1947). Playtime. London: Ptarmigan.
Phillips, H. (1950). The Hubert Phillips annual 1951. London: Hamish Hamilton.
Phillips, H. (1960). Problems omnibus (Vol. 1). London: Arco.
Phillips, H. (1961a). My best puzzles in logic and reasoning. New York: Dover.
Phillips, H. (1961b). My best puzzles in mathematics. New York: Dover.
Phillips, H. (1962). Problems omnibus (Vol. 2). London: Arco.
Phillips, H., Shovelton, S. T., & Marshal, G. S. (1961). Caliban's problem book. New York: Dover.
Posamentier, A. S., & Salkind, C. T. (1996a). Challenging problems in algebra (rev. ed). New York: Dover.
Posamentier, A. S., & Salkind, C. T. (1996b). Challenging problems in geometry (rev. ed.). New York: Dover.
Posamentier, A. S., & Wernick, W. (1988). Advanced geometric constructions. Palo Alto, CA: Seymour.
Ransom, W. R. (1955). One hundred mathematical curiosities. Portland, ME: J. Weston Walch.
Reis, C. M., & Ditor, S. Z. (Eds.). (1988). The Canadian mathematics olympiads (1979–1985). Ottawa, ON, Canada: Canadian Mathematical Society.
Ruderman, H. D. (1983). NYSML-ARML Contests 1973–1982. Norman, OK: Mu Alpha Theta.
Salkind, C. T., & Earl, J. M. (1973). The Mathematical Association of America problem book III. New York: Random House.
Shklarsky, D. O., Chentzov, N. N., & Yaglom, I. M. (1979). Selected problems and theorems in elementary mathematics (V. M. Volosov & I. G. Volsova, Trans.). Moscow: Mir.
Shortz, W. (1991). Will Shortz's best brain busters. New York: Random House, Times Books.
Shortz, W. (1993). Brain twisters from the First World Puzzle Championships. New York: Random House, Times Books.
Sierpinski, W. (1964). A selection of problems in the theory of numbers. London: Pergamon/Macmillan.
Sierpinski, W. (1970). Two hundred fifty problems in elementary number theory. New York: American Elsevier.
Snape, C., & Scott, H. (1991). How puzzling. New York: Cambridge University Press.
Soifer, A. (1987). Mathematics as problem solving. Colorado Springs, CO: Center for Excellence in Mathematics Education.
Sole, T. (1988). The ticket to heaven and other superior puzzles. London: Penguin.
Ulam, S. M. (1960). Problems in modern mathematics. New York: Wiley.
Vakil, R. (1996). A mathematical mosaic: Patterns and problem solving. Burlington, ON, Canada: Kelly.
Vout, C., & Gray, G. (1993). Challenging puzzles. New York: Cambridge University Press.
Wall, H. S. (1963). Creative mathematics. Austin: University of Texas Press.
Wells, D. G. (1979). Recreations in logic. New York: Dover.
Williams, W. T, & Savage, G. H. (1940). The Penguin problems book. London: Penguin.
Williams, W. T, & Savage, G. H. (1944). The second Penguin problems book. London: Penguin.
Williams, W. T, & Savage, G. H. (1946). The third Penguin problems book. London: Penguin.
Yaglom, A. M., &. Yaglom, I. M. (1964). Challenging mathematical problems with elementary solutions (Vol. 1). San Francisco: Holden-Day.
Yaglom, A. M., &. Yaglom, I. M. (1967). Challenging mathematical problems with elementary solutions (Vol. 2). San Francisco: Holden-Day.
Ackoff, R. L. (1978). The art of problem solving. New York: Wiley.
Adams, J. L. (1974). Conceptual blockbusting. San Francisco: Freeman.
Adler, I. (1970). Mathematics and mental growth. London: Dobson.
Andre, T. (1986). Problem solving and education. In G. Phye and T. Andre (Eds.), Cognitive classroom learning: Understanding, thinking, and problem solving (pp. 169–204). Orlando, FL: Academic Press.
Arnold, W. R. (1971). Students can pose and solve original problems. The Mathematics Teacher, 64, 325.
Averbach, B., & Chein, O. (1980). Mathematics: Problem solving through recreational mathematics. San Francisco: Freeman.
Bransford, J. D., & Stein, B. S. (1984). The ideal problem solver. New York: Freeman.
Brown, S. I., & Walter, M. I. (1983). The art of problem posing. Hillsdale, NJ: Erlbaum.
Butts, T. (1985). In praise of trial and error. Mathematics Teacher, 78, 167.
Charles, R., & Lester, F. (1982). Teaching problem solving: What, why, and how. Palo Alto, CA: Seymour.
Chipman, S., Segal, J., & Glaser, R. (1985). Thinking and learning skills. Vol. 2: Research and open questions. Hillsdale, NJ: Erlbaum.
Cofman, J. (1990). What to solve? Problems and suggestions for young mathematicians. Oxford: Oxford University Press.
Cofman, J. (1995). Numbers and shapes revisited: More problems for young mathematicians. Oxford: Oxford University Press.
Costa, A. (1984, November). Mediating the metacognitive. Educational Leadership, 57–62.
Curcio, F. (Ed.). (1987). Teaching and learning, a problem solving focus. Reston, VA: National Council of Teachers of Mathematics.
Davis, R., Jockusch, E., & McKnight, C. (1978, Spring). Cognitive processes in learning algebra. Journal of Children's Mathematical Behavior, 2(1).
Derry, S. J., & Murphy, D. A. (1986, Spring). Designing systems that train learning ability: From theory to practice. Review of Educational Research, 56(1), 1–39.
Emmet, E. R. (1981). Learning to think. Verplanck, NY: Emerson Books.
Fisher, R. B. (1981). Brain games. London: Fontana.
Fixx, J. F. (1978). Solve it! New York: Doubleday.
Frederiksen, N. (1984, Fall). Implications of cognitive theory for instruction on problem solving. Review of Educational Research, 54(3), 363–407.
Gardner, M. (1978). Aha! Insight. New York: Scientific American & Freeman.
Gardner, M. (1982). Aha! Gotcha. San Francisco: Freeman.
Gifted students. (1983). Mathematics Teacher, 76.
Gordon, W. J. J. (1961). Synectics—The development of creative capacity. New York: Harper & Row.
Hadamard, J. (1954). The psychology of invention in the mathematical field. New York: Dover.
Heiman, M., Narode, R., Slomianko, J., & Lochhead, J. (1987). Thinking skills: Mathematics, teaching.Washington, DC: National Education Association.
Honsberger, R. (1970). Ingenuity in mathematics. Washington, DC: Mathematical Association of America, New Mathematical Library.
Honsberger, R. (1973). Mathematical gems (Vol. 1, Dolciani Mathematical Expositions No. 1). Washington, DC: Mathematical Association of America.
Honsberger, R. (1976). Mathematical gems (Vol. 2, Dolciani Mathematical Expositions No. 2). Washington, DC: Mathematical Association of America.
Honsberger, R. (1978). Mathematical morsels (Dolciani Mathematical Expositions No. 3). Washington, DC: Mathematical Association of America.
Honsberger, R. (1979). Mathematical plums (Dolciani Mathematical Expositions No. 4). Washington, DC: Mathematical Association of America.
Honsberger, R. (1985). Mathematical gems 3 (Dolciani Mathematical Expositions No. 9). Washington, DC: Mathematical Association of America.
Honsberger, R. (1991). More mathematical morsels (Dolciani Mathematical Expositions No. 10). Washington, DC: Mathematical Association of America.
Hough, J. S. (Ed.). (1984). Problem solving (Newsletter, Vols. 1–5). Philadelphia: Franklin Institute Press.
Hughes, B. (1975). Thinking through problems. Palo Alto, CA: Creative.
Jensen, R. J. (1987). Stuck? Don't give up! Subgoal-generation strategies in problem solving. The Mathematics Teacher, 80, 614.
Karmos, J., & Karmos, A. (1987). Strategies for active involvement in problem solving. In M. Heiman & J. Slomianko (Eds.), Thinking skills instruction: Concepts and techniques (pp. 99–110). Washington, DC: National Education Association.
Kluwe, R. (1987). Executive decisions and regulation of problem solving behavior. In F. Weinert & R. Kluwe (Eds.), Metacognition, motivation and understanding. Hillsdale, NJ: Erlbaum.
Krantz, S. G. (1997). Techniques of problems solving. Providence, RI: American Mathematical Society.
Krulik, S. (Ed.). (1980). Problem solving in school mathematics, 1980 yearbook. Reston, VA: National Council of Teachers of Mathematics.
Krulik, S., & Rudnick, J. (1987). Problem solving: A handbook for teachers (2nd ed.). Boston: Allyn & Bacon.
Krulik, S., & Rudnick, J. (1989). Problem solving: A handbook for senior high school teachers. Boston: Allyn & Bacon.
Krulik, S., & Rudnick, J. (1993). Reasoning and problem solving: A handbook for elementary school teachers. Boston: Allyn & Bacon.
Krulik, S., & Rudnick, J. (1995). The new sourcebook for teaching reasoning and problem solving in elementary schools. Boston: Allyn & Bacon.
Krulik, S., & Rudnick, J. (1996). The new sourcebook for teaching reasoning and problem solving in secondary schools. Boston: Allyn & Bacon.
Mason, J. (1984). Learning and doing mathematics. Milton Keynes, England: Open University Press.
Mason, J. (with Burton, L., & Stacey, K.) (1985). Thinking mathematically. Reading, MA: Addison-Wesley.
Mayer, R. (1986). Mathematics. In R. Dillon & R. Sternberg (Eds.), Cognition and instruction. Orlando, FL: Academic Press.
McKim, R. H. (1980). Thinking visually: A strategy manual for problem solving. Palo Alto, CA: Seymour.
Moses, S. (1974). The art of problem-solving. London: Transworld.
Mottershead, L. (1978). Sources of mathematical discovery. Oxford, UK: Blackwell.
Mottershead, L. (1985). Investigations in mathematics. Oxford, UK: Blackwell.
Nickerson, R. (1981, October). Thoughts on teaching thinking. Educational Leadership, 21–24.
Nickerson, R., Perkins, D., & Smith, E. (1985). The teaching of thinking. Hillsdale, NJ: Erlbaum.
Noller, R. B., Heintz, R. E., & Blaeuer, D. A. (1978). Creative problem solving in mathematics. Buffalo, NY: D. O. K..
Polya, G. (1954a). Introduction and analogy in mathematics. Princeton, NJ: Princeton University Press.
Polya, G. (1954b). Patterns of plausible inference. Princeton, NJ: Princeton University Press.
Polya, G. (1981). Mathematical discovery (Vols. 1–2, combined ed. with foreword by P. Hilton, bibliography extended by G. Alexanderson, & index extended by J. Pedersen). New York: Wiley. (Original works published 1962, 1965)
Posamentier, A. S. (1996). Teachers! Prepare your students for the mathematics for SAT I: Methods and problem-solving strategies. Thousand Oaks, CA: Corwin.
Posamentier, A. S., & Krulik, S. (1998). Problem solving strategies for efficient and elegant solutions: A resource for the mathematics teacher. Thousand Oaks, CA: Corwin.
Reeves, C. A. (1987). Problem solving techniques helpful in mathematics and science. Reston, VA: National Council of Teachers of Mathematics.
Schoenfeld, A. H. (1983). Problem solving in the mathematics curriculum. Washington, DC: Mathematical Association of America.
Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando, FL: Academic Press.
Segal, J., Chipman, S., & Glaser, R. (Eds.). (1985). Thinking and learning skills, Vol. 1: Relating instruction to research. Hillsdale, NJ: Erlbaum.
Silver, E. A. (Ed.). (1985). Teaching and learning mathematical problem solving. Hillsdale, NJ: Erlbaum.
Simon, M. A. (1986, April). The teacher's role in increasing student understanding of mathematics. Educational Leadership, 43(7), 40–43.
Skemp, R. R. (1971). The psychology of learning mathematics. Baltimore, MD: Penguin Books.
Smullyan, R. (1978). What is the name of this book? Englewood Cliffs, NJ: Prentice-Hall.
Troutman, A., & Lichtenberg, B. P. (1974, November). Problem solving in the general mathematics classroom. Mathematics Teacher, 67(7), 590–597.
Walter, M. I., & Brown, S. I. (1977, January). Problem posing and problem solving. Mathematics Teacher, 70(1), 4–13.
Whirl, R. J. (1973, October). Problem solving—solution or technique? Mathematics Teacher, 66(6), 551–553.
Winckelgren, W. A. (1974). How to solve problems. San Francisco: Freeman.
Subscribe to ASCD Express, our free e-mail newsletter, to have practical, actionable strategies and information delivered to your e-mail inbox twice a month.
ASCD respects intellectual property rights and adheres to the laws governing them. Learn more about our permissions policy and submit your request online.