Skip to content
ascd logo

Join
February 1, 2004
Vol. 61
No. 5

Research Link / Closing the Minority Achievement Gap in Math

Research Link /  Closing the Minority Achievement Gap in Math - thumbnail
The United States has set a national goal of ensuring that each student receives an equitable, high-quality education, and that no child is left behind in this quest. Are we achieving that goal in mathematics education? Not according to the results of the National Assessment of Educational Progress (NAEP). Although all racial/ethnic subgroups have shown improvement since 1990, the 2003 NAEP scores show that white students and Asian/Pacific Islander students continue to outperform black, Hispanic, and American Indian/Alaskan native students at every grade level (National Center for Education Statistics, 2003a).
What causes the continuing minority achievement gap in mathematics and other content areas? Barton (2003) has shown that minority students face numerous academic barriers to achievement, both in the classroom and outside of school. One factor that shows up in his research is that minority students as a group experience a less rigorous curriculum. Lower expectations for these students often preclude the opportunity for them to take more rigorous courses because of inadequate prior preparation.
The U.S. Department of Education report Status and Trends in Hispanic Education (NCES, 2003b) points out that in 1998, approximately one-fourth of Hispanic, black, and American Indian/Alaskan native students (26, 30, and 27 percent, respectively) completed advanced mathematics courses, whereas approximately one-half of white and Asian/Pacific Islander students (45 and 56 percent, respectively) did so. To succeed in mathematics, especially higher-level mathematics such as Algebra II and Calculus, all students must have access to and succeed in such gateway courses as Algebra I. However, this report shows that 59 percent of Hispanics completed only middle-level mathematics courses, 8 percent took low-level courses, and 7 percent completed nonacademic courses or no mathematics courses at all.
This lack of math preparation in the earlier grades takes its toll later on. The Education Statistics Quarterly (NCES, 1999) reports that the underrepresentation of minorities extends to Advanced Placement Calculus. In 1997, 33 of every 1,000 white 12th graders enrolled in this course, but only 7 of every 1,000 black students and 12 of every 1,000 Hispanic students took on this challenge.

Curriculum Reform

  • High expectations for all students;
  • A coherent curriculum of important mathematics, articulated across grade levels;
  • Teachers who understand what students need to learn and then challenge and support them;
  • Instruction that builds new knowledge from experience and prior knowledge;
  • Assessment that supports learning and provides useful information to both teachers and students; and
  • Technology that influences the mathematics taught and enhances students' learning.
Research suggests that when these principles are applied to practice, they can improve equity.
Schoenfeld (2002) examined the Pittsburgh, Pennsylvania, school district to find out how a reform curriculum based on the application of the new NCTM standards and principles supported minority students. Under the former traditional curriculum, fewer than one-third of the minority students met or exceeded the skill standard of a reference exam. With the new curriculum in place, more than 50 percent of the minority students met or exceeded the standard. From 1997 to 2000, the proportion of minority students performing well in terms of skills doubled under the new curriculum. This study concluded that to ensure sustained improvement in mathematics instruction, schools must provide a high-quality curriculum; a stable, knowledgeable, and professional teaching community; and high-quality assessment aligned with the curriculum.
Manswell-Butty (2001) conducted research that supported Schoenfeld's conclusions. She found that when minority 12th grade students received reform instruction, they had significantly higher achievement scores than did students receiving traditional instruction. Both Manswell-Butty and Schoenfeld describe the traditional curriculum as one that does not emphasize the kinds of mathematics that would enable students to make sense of the world around them; neither statistics nor mathematical modeling is part of this curriculum. This curriculum focuses on preparing just a portion of the students for college-level work in calculus and contains little or no emphasis on communicating and using mathematical ideas. Instead, it emphasizes computation and arriving at the correct answer. The reform curriculum, in contrast, calls for instruction that provides all students with the mathematical background for quantitative literacy for the workplace and for study at the college level.
Lubienski's (2002) research found that the sooner minority students are introduced to the reform curriculum the better. She found that the past decades of the old drill-and-kill instruction has not produced equitable results.

Increased Teacher Sensitivity

The quality of teacher-student interactions is another area that has the potential to improve the mathematics achievement of minority students. A review of the research by SciMath and the Minnesota Department of Children, Families, and Learning (1998) found that teacher behaviors make a difference in minority student achievement in mathematics and that minority students benefit from teachers who expect students of all racial, ethnic, and cultural backgrounds to achieve. Such teachers consider students' language, culture, and community as assets rather than liabilities and recognize that all racial/ethnic/cultural groups have contributed to our common mathematics knowledge base. These teachers increase the cognitive level of interactions with students of color using diverse and flexible assessments to determine students' strengths. They use immediate and effective remediation to counteract poor performance results and vary the instructional styles in the classroom.
Current preservice training appears to neglect the important teacher quality of multicultural awareness. Bryan and Atwater (2002) found that preservice science teachers enter their undergraduate programs with little or no intercultural experiences, and they graduate with a worldview that remains limited to their own sociocultural backgrounds. The researchers found that courses focusing on multicultural education—particularly opportunities in the field for prospective science teachers to interact with students of diverse cultures—help develop a multicultural awareness among science teachers.
Kelly (2002) agrees that preservice training has not done enough to help prospective teachers deal with multicultural classrooms. Of the 48 teacher candidates she studied, only five could even describe “equity.” She found that immersing preservice teachers in the study of equity helps most of them identify inequities and builds awareness of classroom gender separation.

Powerful Curriculum, Sensitive Instruction

Research has shown that we can improve the chances of success for achievement in mathematics for all students. But this can only occur when schools provide students with a rich standards-based curriculum, aligned and articulated across grade levels, that supports high expectations for all students. This curriculum, combined with greater teacher sensitivity to the needs of minority students, can become a powerful force in closing the mathematics achievement gap.
References

Barton, P. (2003). Parsing the achievement gap. Princeton, NJ: Educational Testing Service.

Bryan, L., & Atwater, M. (2002). Teacher beliefs and cultural models. Science Education, 86(6), 821–839.

Kelly, C. (2002). Creating equitable classroom climates. Child Study Journal, 32(1), 39–52.

Lubienski, S. (2002). Research, reform, and equity in U.S. mathematics education. Mathematical Thinking and Learning, 4(2–3), 103–125.

Manswell-Butty, J. (2001). Teacher instruction, student attitudes, and mathematics performance among 10th and 12th grade black and Hispanic students. Journal of Negro Education, 70(1/2), 19–37.

National Center for Education Statistics [NCES]. (1999). Educational Statistics Quarterly, 1(4). Washington, DC: U.S. Department of Education. Available: http://nces.ed.gov/pubs99/quarterly/winter/3elem/3-esq14-e.html

NCES. (2003a). Mathematics 2003 major results: Subgroup results for the nation [Online]. Available: http://nces.ed.gov/nationsreportcard/mathematicsresults2003

NCES. (2003b). Status and trends in Hispanic education. (NCES Report No. 2003-008). Washington, DC: U.S. Department of Education. Available: http://nces.ed.gov/pubs2003/hispanics/Section9.asp

National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author. Available: http://standards.nctm.org/document/index.htm

Schoenfeld, A. (2002). Making mathematics work for all children. Educational Researcher, 31(1), 13–25.

SciMath & Minnesota Department of Children, Families, & Learning. (1998). Best practice: What we know from research about teaching, learning, and assessment. In Minnesota K-12 mathematics framework (pp. 32–40). St. Paul, MN: Author. Available: www.scimathmn.org/frameworks_math.htm

Author bio coming soon

Learn More

ASCD is a community dedicated to educators' professional growth and well-being.

Let us help you put your vision into action.
Related Articles
View all
undefined
Leadership
Preventing "Wellness Fraud" for Leaders
Jo Lein
2 weeks ago

Related Articles

From our issue
Product cover image 104027.jpg
Improving Achievement in Math and Science
Go To Publication